Bifidobacterium bifidum E3 Combined with Bifidobacterium longum subsp. infantis E4 Improves LPS-Induced Intestinal Injury by Inhibiting the TLR4/NF-κB and MAPK Signaling Pathways In Vivo

被引:18
作者
Yue, Yingxue [1 ]
Wang, Yuqi [2 ]
Xie, Qinggang [1 ,3 ]
Lv, Xiuli [1 ]
Zhou, Linyi [4 ]
Smith, Etareri Evivie [1 ,5 ,6 ]
Cao, Ting [1 ]
Zhang, Yifan [1 ]
Li, Bailiang [1 ]
Huo, Guicheng [1 ]
Ma, Weiwei [7 ]
机构
[1] Northeast Agr Univ, Food Coll, Harbin 150030, Peoples R China
[2] Heilongjiang Jinxiang Biochem Co Ltd, Harbin 150030, Peoples R China
[3] Heilongjiang Feihe Dairy Co Ltd, Qiqihar 164800, Peoples R China
[4] Beijing Technol & Business Univ BTBU, China Sch Food & Hlth, Beijing 100048, Peoples R China
[5] Univ Benin, Fac Agr, Dept Anim Sci, Benin 300001, Nigeria
[6] Univ Benin, Fac Agr, Dept Food Sci & Human Nutr, Benin 300001, Nigeria
[7] Heilongjiang Univ Chinese Med, Coll Pharm, Harbin 150000, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Bifidobacterium; intestinal immunity; inflammation; NF kappa B/MAPK signaling pathway; gut microbiota; metabonomics; NF-KAPPA-B; INFLAMMATORY-BOWEL-DISEASE; CHAIN FATTY-ACIDS; BARRIER FUNCTION; GENE-EXPRESSION; MUCOSAL BARRIER; CELLS; LIPOPOLYSACCHARIDE; COLITIS; MICE;
D O I
10.1021/acs.jafc.3c00421
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Changes in the functions of the intestinal barrier occur in parallel with the development of sepsis. The protection by Bifidobacterium strains (BB, BL, BB12, and BLBB) was evaluated in mice injected with lipopolysaccharide (LPS). The results revealed an increase in the ratio of ileal villus length to crypt depth in the BLBB group compared with that in the LPS group, as were the number of IgA(+) plasma, CD4(+)/CD8(+) T, and dendritic cells. The levels of diamine oxidase (DAO) and D-lactic acid in the serum were lessened in the BLBB group after LPS injection compared with that in the LPS group. In addition, the BLBB group exhibited an increased expression level of tight junction proteins (zonula occludens-1, occludin, and claudin-1), mucin (MUC2) mRNA, reduced NF kappa/MAPK signaling pathways, and decreased expression levels of inflammatory cytokines (IL-1 beta, IL-6, and TNF-alpha). The BLBB group enriched the relative abundance of Muribaculaceae, Lachnospiraceae_NK4A136_group, Clostridia_Ucg-014, and Alistipes, resulting in an increase in strains producing short-chain fatty acids. Furthermore, the BLBB group leads to higher levels of deoxycholic acid and biosynthesized linoleate. This study suggested that the BLBB group could enhance the capacity of the intestinal barrier and intestinal mucosal immunity, reduce intestinal inflammation, and improve the composition of gut microbiota. Bifidobacterium bifidum E3 combined with Bifidobacterium longum subsp. infantis E4 may thus serve as a probiotic against the intestinal injury caused by LPS.
引用
收藏
页码:8915 / 8930
页数:16
相关论文
共 50 条
  • [31] L-Arginine Ameliorates Lipopolysaccharide-Induced Intestinal Inflammation through Inhibiting the TLR4/NF-κB and MAPK Pathways and Stimulating β-Defensin Expression in Vivo and in Vitro
    Lan, Jing
    Dou, Xiujing
    Li, Jiawei
    Yang, Yang
    Xue, Chenyu
    Wang, Chenxi
    Gao, Nan
    Shan, Anshan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (09) : 2648 - 2663
  • [32] Ginsenoside Rb1 Reduces D-GalN/LPS-induced Acute Liver Injury by Regulating TLR4/NF-κB Signaling and NLRP3 Inflammasome
    Liu, Yimei
    Liu, Ninghua
    Liu, Yujing
    He, Hongyu
    Luo, Zhe
    Liu, Wenjun
    Song, Nan
    Ju, Minjie
    JOURNAL OF CLINICAL AND TRANSLATIONAL HEPATOLOGY, 2022, 10 (03) : 474 - 485
  • [33] Total glycosides of Rhodiola rosea L. attenuate LPS-induced acute lung injury by inhibiting TLR4/NF-ΚB pathway
    Jia, Xuehai
    Zhang, Ke
    Feng, Shushu
    Li, Yuyao
    Yao, Dahong
    Liu, Qiaohui
    Liu, Dong
    Li, Xin
    Huang, Jian
    Wang, Hangyu
    Wang, Jinhui
    BIOMEDICINE & PHARMACOTHERAPY, 2023, 158
  • [34] Polygonatum sibiricum polysaccharides prevent LPS-induced acute lung injury by inhibiting inflammation via the TLR4/Myd88/NF-κB pathway
    Liu, Tian-Yin
    Zhao, Li-Li
    Chen, Shi-Biao
    Hou, Ben-Chao
    Huang, Jian
    Hong, Xiu
    Qing, Lian
    Fang, Yu
    Tao, Zhe
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2020, 20 (04) : 3733 - 3739
  • [35] Ugonin M, a Helminthostachys zeylanica Constituent, Prevents LPS-Induced Acute Lung Injury through TLR4-Mediated MAPK and NF-κB Signaling Pathways
    Wu, Kun-Chang
    Huang, Shyh-Shyun
    Kuo, Yueh-Hsiung
    Ho, Yu-Ling
    Yang, Chang-Syun
    Chang, Yuan-Shiun
    Huang, Guan-Jhong
    MOLECULES, 2017, 22 (04):
  • [36] Lysophosphatidylcholine Triggers TLR2-and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation
    Carneiro, Alan Brito
    Ferreira Iaciura, Bruna Maria
    Nohara, Lilian Lie
    Lopes, Carla Duque
    Cordero Veas, Esteban Mauricio
    Mariano, Vania Sammartino
    Bozza, Patricia Torres
    Lopes, Ulisses Gazos
    Atella, Georgia Correa
    Almeida, Igor Correia
    Cardoso Silva-Neto, Mario Alberto
    PLOS ONE, 2013, 8 (09):
  • [37] Madecassoside Protects Against LPS-Induced Acute Lung Injury via Inhibiting TLR4/NF-κB Activation and Blood-Air Barrier Permeability
    Peng, Lu-Yuan
    Shi, Hai-Tao
    Yuan, Meng
    Li, Jing-He
    Song, Ke
    Huang, Jiang-Ni
    Yi, Peng-Fei
    Shen, Hai-Qing
    Fu, Ben-Dong
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [38] The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways
    Meng, Lu
    Li, Longyun
    Lu, Shan
    Li, Kai
    Su, Zhenbo
    Wang, Yunyun
    Fan, Xiaodi
    Li, Xuyang
    Zhao, Guoqing
    MOLECULAR IMMUNOLOGY, 2018, 94 : 7 - 17
  • [39] Nicotinamide Mononucleotide Restores NAD+ Levels to Alleviate LPS-Induced Inflammation via the TLR4/NF-κB/MAPK Signaling Pathway in Mice Granulosa Cells
    Ahmed, Mehboob
    Riaz, Umair
    Lv, Haimiao
    Amjad, Muhammad
    Ahmed, Sohail
    Ali, Shaokat
    Ghani, Muhammad Usman
    Hua, Guohua
    Yang, Liguo
    ANTIOXIDANTS, 2025, 14 (01)
  • [40] Synergistic effect of 2′-Fucosyllactose or galactooligosaccharide with Bifidobacterium bifidum DNG6 improves the intestinal barrier by modulating the SCFAs-TLR4/NF-κB cascade response in DSS-induced colitis in mice
    Sun, Cui-Cui
    Wang, Yu-Qi
    Wang, Xin-Yu
    Zhang, Guo-Fang
    Cao, Hong-Fang
    Song, Ge
    Liu, Li-Bo
    Li, Chun
    Boyarineva, Irina Valeryevna
    Du, Peng
    FOOD BIOSCIENCE, 2025, 64