Artificial intelligence-based refractive error prediction and EVO-implantable collamer lens power calculation for myopia correction

被引:2
作者
Jiang, Yinjie [1 ,2 ,3 ]
Shen, Yang [1 ,2 ,3 ]
Chen, Xun [1 ,2 ,3 ]
Niu, Lingling [1 ,2 ,3 ]
Li, Boliang [1 ,2 ,3 ]
Cheng, Mingrui [1 ,2 ,3 ]
Lei, Yadi [1 ,2 ,3 ]
Xu, Yilin [1 ,2 ,3 ]
Wang, Chongyang [4 ]
Zhou, Xingtao [1 ,2 ,3 ]
Wang, Xiaoying [1 ,2 ,3 ]
机构
[1] Fudan Univ, Eye Ear Nose & Throat Hosp, 19 BaoQing Rd, Shanghai 200031, Peoples R China
[2] Fudan Univ, Natl Hlth Commiss Key Lab Myopia, Shanghai, Peoples R China
[3] Shanghai Res Ctr Ophthalmol & Optometry, Shanghai, Peoples R China
[4] Shanghai MediWorks Precis Instruments Co Ltd, Res & Dev Dept, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial intelligence; Machine learning; Refractive error; Myopia; Implantable collamer lens; Toric implantable collamer lens; Lens power calculation; ROTATIONAL STABILITY; VISUAL OUTCOMES; ASTIGMATISM;
D O I
10.1186/s40662-023-00338-1
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
BackgroundImplantable collamer lens (ICL) has been widely accepted for its excellent visual outcomes for myopia correction. It is a new challenge in phakic IOL power calculation, especially for those with low and moderate myopia. This study aimed to establish a novel stacking machine learning (ML) model for predicting postoperative refraction errors and calculating EVO-ICL lens power.MethodsWe enrolled 2767 eyes of 1678 patients (age: 27.5 +/- 6.33 years, 18-54 years) who underwent non-toric (NT)-ICL or toric-ICL (TICL) implantation during 2014 to 2021. The postoperative spherical equivalent (SE) and sphere were predicted using stacking ML models [support vector regression (SVR), LASSO, random forest, and XGBoost] and training based on ocular dimensional parameters from NT-ICL and TICL cases, respectively. The accuracy of the stacking ML models was compared with that of the modified vergence formula (MVF) based on the mean absolute error (MAE), median absolute error (MedAE), and percentages of eyes within +/- 0.25, +/- 0.50, and +/- 0.75 diopters (D) and Bland-Altman analyses. In addition, the recommended spheric lens power was calculated with 0.25 D intervals and targeting emmetropia.ResultsAfter NT-ICL implantation, the random forest model demonstrated the lowest MAE (0.339 D) for predicting SE. Contrarily, the SVR model showed the lowest MAE (0.386 D) for predicting the sphere. After TICL implantation, the XGBoost model showed the lowest MAE for predicting both SE (0.325 D) and sphere (0.308 D). Compared with MVF, ML models had numerically lower values of standard deviation, MAE, and MedAE and comparable percentages of eyes within +/- 0.25 D, +/- 0.50 D, and +/- 0.75 D prediction errors. The difference between MVF and ML models was larger in eyes with low-to-moderate myopia (preoperative SE > - 6.00 D). Our final optimal stacking ML models showed strong agreement between the predictive values of MVF by Bland-Altman plots.ConclusionWith various ocular dimensional parameters, ML models demonstrate comparable accuracy than existing MVF models and potential advantages in low-to-moderate myopia, and thus provide a novel nomogram for postoperative refractive error prediction and lens power calculation.
引用
收藏
页数:13
相关论文
共 41 条
[31]   The Implantable Collamer Lens with a central port: review of the literature [J].
Packer, Mark .
CLINICAL OPHTHALMOLOGY, 2018, 12 :2427-2438
[32]   Postoperative Astigmatism and Axis Stability After Implantation of the STAAR Toric Implantable Collamer Lens [J].
Park, Sung Chul ;
Kwun, Young Kyo ;
Chung, Eui-Sang ;
Ahn, Kyeon ;
Chung, Tae-Young .
JOURNAL OF REFRACTIVE SURGERY, 2009, 25 (05) :403-409
[33]   Grand Challenges in global eye health: a global prioritisation process using Delphi method [J].
Ramke, Jacqueline ;
Evans, Jennifer R. ;
Habtamu, Esmael ;
Mwangi, Nyawira ;
Silva, Juan Carlos ;
Swenor, Bonnielin K. ;
Congdon, Nathan ;
Faal, Hannah B. ;
Foster, Allen ;
Friedman, David S. ;
Gichuhi, Stephen ;
Jonas, Jost B. ;
Khaw, Peng T. ;
Kyari, Fatima ;
Murthy, Gudlavalleti V. S. ;
Wang, Ningli ;
Wong, Tien Y. ;
Wormald, Richard ;
Yusufu, Mayinuer ;
Taylor, Hugh ;
Resnikoff, Serge ;
West, Sheila K. ;
Burton, Matthew J. .
LANCET HEALTHY LONGEVITY, 2022, 3 (01) :E31-E41
[34]   Interchangeability between Pentacam and IOLMaster in phakic intraocular lens calculation [J].
Sayed, Khulood M. ;
Alsamman, Alahmady H. .
EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2015, 25 (03) :202-207
[35]   Big-data and artificial-intelligence-assisted vault prediction and EVO-ICL size selection for myopia correction [J].
Shen, Yang ;
Wang, Lin ;
Jian, Weijun ;
Shang, Jianmin ;
Wang, Xin ;
Ju, Lie ;
Li, Meiyan ;
Zhao, Jing ;
Chen, Xun ;
Ge, Zongyuan ;
Wang, Xiaoying ;
Zhou, Xingtao .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2023, 107 (02) :201-206
[36]  
staar, ABOUT US
[37]  
Van der Heijde G., 1989, European Journal of Implant and Refractive Surgery, V1, P245, DOI [10.1016/S0955-3681(89)80082-6, DOI 10.1016/S0955-3681(89)80082-6]
[38]   Residual Astigmatism Following Toric Intraocular Lens Implantation Related to Pupil Size [J].
Visser, Nienke ;
Bauer, Noel J. C. ;
Nuijts, Rudy M. M. A. .
JOURNAL OF REFRACTIVE SURGERY, 2012, 28 (10) :729-732
[39]   Comparative Study of Implantable Collamer Lens Implantation in Treating Four Degrees of Myopia: Six-Month Observation of Visual Results, Higher-Order Aberrations, and Amplitude of Accommodation [J].
Wan, Ting ;
Yin, Houfa ;
Wu, Zhiyi ;
Yang, Yabo .
CURRENT EYE RESEARCH, 2020, 45 (07) :839-846
[40]   Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes [J].
Wang, Li ;
Koch, Douglas D. ;
Hill, Warren ;
Abulafia, Adi .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2017, 43 (08) :999-1002