Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete

被引:5
|
作者
Mosleh, Youssef A. [1 ]
Gharieb, Mahmoud [2 ]
Rashad, Alaa M. [1 ,3 ]
机构
[1] Housing & Bldg Natl Res Ctr HBRC, Bldg Mat & Qual Control Res Inst, Cairo, Egypt
[2] Housing & Bldg Natl Res Ctr HBRC, Raw Bldg Mat & Technol Proc Res Inst, Cairo, Egypt
[3] Shaqra Univ, Coll Engn, Civil Engn Dept, Riyadh, Saudi Arabia
关键词
alkali-activated slag; fly ash concrete; hardened properties; microstructure; sodium hexametaphosphate (SHMP); sodium tripolyphos-phate (STPP); workability; ADDING SODIUM HEXAMETAPHOSPHATE; CEMENTITIOUS MATERIALS; FLY-ASH; MECHANICAL-PROPERTIES; AUTOGENOUS SHRINKAGE; KAOLIN SUSPENSIONS; TRIPOLYPHOSPHATE; HYDRATION; PASTE; DURABILITY;
D O I
10.14359/51738460
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Polyphosphate materials such as sodium tripolyphosphate (STPP) and sodium hexametaphosphate (SHMP) are usually used as a dispersion agent for the ceramic industry, auxiliary materials in high-range water-reducing admixtures, and retarders in traditional cement systems. Until now, however, no comprehensive study has been performed on the effect of STPP or SHMP on the properties of alkali-activated materials (AAMs). Thus, in this paper, the effect of different concentrations (2 to 8 wt. %) of STPP and SHMP on the properties of alkali-activated slag/fly ash concrete was investi-gated. The variations in workability, compressive strength, water absorption, and total porosity with the incorporation of either STPP or SHMP at levels of 2, 4, 6, and 8%, by weight, were conducted. Modern techniques were employed to investigate the crystalline phases and microstructure morphologies. The primary results showed that both STPP and SHMP can increase workability. Each type of polyphosphate showed a positive effect on the compres-sive strength, but 4% was the optimum concentration. Both water absorption and total porosity were reduced with the incorporation of each type of polyphosphate, but 4% was the optimum. The incor-poration of a suitable concentration of each type of polyphosphate can enhance the dispersion and deagglomeration of the particles and refine the microstructure.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 50 条
  • [31] Properties and durability of alkali-activated ladle slag
    Adesanya, Elijah
    Ohenoja, Katja
    Kinnunen, Paivo
    Illikainen, Mirja
    MATERIALS AND STRUCTURES, 2017, 50 (06)
  • [32] Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag
    Ouyang, Xiaowei
    Ma, Yuwei
    Liu, Ziyang
    Liang, Jianjun
    Ye, Guang
    MINERALS, 2020, 10 (01)
  • [33] Performance of Steel Fiber-Reinforced Alkali-Activated Slag-Fly Ash Blended Concrete Incorporating Recycled Concrete Aggregates and Dune Sand
    El-Hassan, Hilal
    Hussein, Abdalla
    Medljy, Jamal
    El-Maaddawy, Tamer
    BUILDINGS, 2021, 11 (08)
  • [34] Effect of the Combined Using of Fly Ash and Granulated Blast Furnace Slag on Properties of Cementless Alkali-Activated Mortar
    Koh, Kyungtaek
    Ryu, Gumsung
    Kim, Shihwan
    Lee, Janghwa
    APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 916 - 921
  • [35] Effect of recycled fine aggregates on alkali-activated slag concrete properties
    Huang, Jinguang
    Zou, Chaoying
    Sun, Duo
    Yang, Bin
    Yan, Jiachuan
    STRUCTURES, 2021, 30 : 89 - 99
  • [36] Effect of CaO on the shrinkage and microstructure of alkali-activated slag/ fly ash microsphere
    Zhang, Liu
    Ma, Yuwei
    Ouyang, Xiaowei
    Fu, Jiyang
    Li, Zongjin
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 421
  • [37] Effect of Fly Ash and Silica Fume Contents on Mechanical Properties of Alkali-Activated Slag-Based Concrete
    Xia, Dongtao
    Wu, Chen
    Cui, Kai
    Wu, Fanghong
    Li, Biao
    Wang, Yu
    Yu, Shiting
    Li, Yaowei
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2024, 59 (05): : 1113 - 1122
  • [38] Effect of Graphene Oxide on Properties of Alkali-Activated Slag
    Dong, Quanwen
    Wan, Lihua
    Luan, Congqi
    Wang, Jinbang
    Du, Peng
    MATERIALS, 2021, 14 (20)
  • [39] Performance Evaluation and Microstructure Characterization of Steel Fiber-Reinforced Alkali-Activated Slag Concrete Incorporating Fly Ash
    El-Hassan, Hilal
    Elkholy, Said
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2019, 31 (10)
  • [40] Properties of a Lightweight Fly Ash-Slag Alkali-Activated Concrete with Three Strength Grades
    Wang, Huailiang
    Wu, Yuhui
    Wang, Lang
    Chen, Huihua
    Cheng, Baoquan
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 21