Effect of Polyphosphates on Properties of Alkali-Activated Slag/Fly Ash Concrete

被引:5
|
作者
Mosleh, Youssef A. [1 ]
Gharieb, Mahmoud [2 ]
Rashad, Alaa M. [1 ,3 ]
机构
[1] Housing & Bldg Natl Res Ctr HBRC, Bldg Mat & Qual Control Res Inst, Cairo, Egypt
[2] Housing & Bldg Natl Res Ctr HBRC, Raw Bldg Mat & Technol Proc Res Inst, Cairo, Egypt
[3] Shaqra Univ, Coll Engn, Civil Engn Dept, Riyadh, Saudi Arabia
关键词
alkali-activated slag; fly ash concrete; hardened properties; microstructure; sodium hexametaphosphate (SHMP); sodium tripolyphos-phate (STPP); workability; ADDING SODIUM HEXAMETAPHOSPHATE; CEMENTITIOUS MATERIALS; FLY-ASH; MECHANICAL-PROPERTIES; AUTOGENOUS SHRINKAGE; KAOLIN SUSPENSIONS; TRIPOLYPHOSPHATE; HYDRATION; PASTE; DURABILITY;
D O I
10.14359/51738460
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Polyphosphate materials such as sodium tripolyphosphate (STPP) and sodium hexametaphosphate (SHMP) are usually used as a dispersion agent for the ceramic industry, auxiliary materials in high-range water-reducing admixtures, and retarders in traditional cement systems. Until now, however, no comprehensive study has been performed on the effect of STPP or SHMP on the properties of alkali-activated materials (AAMs). Thus, in this paper, the effect of different concentrations (2 to 8 wt. %) of STPP and SHMP on the properties of alkali-activated slag/fly ash concrete was investi-gated. The variations in workability, compressive strength, water absorption, and total porosity with the incorporation of either STPP or SHMP at levels of 2, 4, 6, and 8%, by weight, were conducted. Modern techniques were employed to investigate the crystalline phases and microstructure morphologies. The primary results showed that both STPP and SHMP can increase workability. Each type of polyphosphate showed a positive effect on the compres-sive strength, but 4% was the optimum concentration. Both water absorption and total porosity were reduced with the incorporation of each type of polyphosphate, but 4% was the optimum. The incor-poration of a suitable concentration of each type of polyphosphate can enhance the dispersion and deagglomeration of the particles and refine the microstructure.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 50 条
  • [1] Fresh and hardened properties of alkali-activated slag concrete: The effect of fly ash as a supplementary precursor
    Sun, Yubo
    Liu, Zhiyuan
    Ghorbani, Saeid
    Ye, Guang
    De Schutter, Geert
    JOURNAL OF CLEANER PRODUCTION, 2022, 370
  • [2] Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature
    Rodrigue, Alexandre
    Bissonnette, Benoit
    Duchesne, Josee
    Fournier, Benoit
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 15 - 23
  • [3] Study on the Macroscopic Properties and Microstructure of High Fly Ash Content Alkali-Activated Fly Ash Slag Concrete Cured at Room Temperature
    Yuan, Zhu
    Jia, Yanmin
    Xie, Xuanben
    Xu, Junming
    MATERIALS, 2025, 18 (03)
  • [4] Investigations on Alkali-Activated Slag/Fly Ash Concrete with steel slag coarse aggregate for pavement structures
    Palankar, Nitendra
    Shankar, A. U. Ravi
    Mithun, B. M.
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2017, 18 (06) : 500 - 512
  • [5] Fresh mechanical and durability properties of alkali-activated fly ash-slag concrete: a review
    Abhishek, H. S.
    Prashant, Shreelaxmi
    Kamath, Muralidhar, V
    Kumar, Mithesh
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2022, 7 (01)
  • [6] External Sulphate Attack on Alkali-Activated Slag and Slag/Fly Ash Concrete
    Bondar, Dali
    Nanukuttan, Sreejith
    BUILDINGS, 2022, 12 (02)
  • [7] Prediction of the autogenous shrinkage and microcracking of alkali-activated slag and fly ash concrete
    Li, Zhenming
    Lu, Tianshi
    Chen, Yun
    Wu, Bei
    Ye, Guang
    CEMENT & CONCRETE COMPOSITES, 2021, 117
  • [8] Mechanical and durability properties of alkali-activated fly ash concrete with increasing slag content
    Aiken, Timothy A.
    Kwasny, Jacek
    Sha, Wei
    Tong, Kien T.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 301
  • [9] Effect of curing regime on the performance and microstructure characteristics of alkali-activated slag-fly ash blended concrete
    El-Hassan, Hilal
    Shehab, Ehab
    Al-Sallamin, Abdelrahman
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2021, 10 (05) : 289 - 317
  • [10] MECHNICAL STRENGTH AND DURABILITY OF ALKALI-ACTIVATED FLY ASH/SLAG CONCRETE
    Chi, Maochieh
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY-TAIWAN, 2016, 24 (05): : 958 - 967