Preparation of highly thermally conductive epoxy composites featuring self-healing and reprocessability

被引:7
|
作者
Cui, Wenqi [1 ]
Hu, Ting [2 ,3 ]
Yang, Shuguang [1 ]
Huang, Baoquan [1 ]
Qian, Qingrong [4 ]
Chen, Qinghua [1 ]
Luo, Fubin [1 ]
机构
[1] Fujian Normal Univ, Engn Res Ctr polymer Green Recycling Minist Educ, Fuzhou, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fujian Prov Key Lab Nanomat, Fuzhou, Peoples R China
[3] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Haixi Inst, Xiamen, Peoples R China
[4] Fujian Normal Univ, Coll Environm & Resource Sci, Fujian Key Lab Pollut Control & Resource Reuse, Fuzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
epoxy; recyclable; self-healing; thermal conductivity; BORON-NITRIDE NANOSHEETS; POLYMER COMPOSITES; VITRIMERS;
D O I
10.1002/pc.27355
中图分类号
TB33 [复合材料];
学科分类号
摘要
Enhancing the thermal conductivity of epoxy resin is an urgent demand for its application in electronic packaging field. In this work, thermally conductive epoxy/graphite composite featuring excellent self-healing and reprocessability is prepared based on covalent adaptable networks. The effect of graphite on the rheology, reprocessing, and self-healing properties of epoxy have been studied. The result shows that the prepared composites can be easily reprocessed and have excellent self-healing property. On the fundamental of the highly multifunctional performance of the epoxy composites, highly thermally conductive bulk composites are constructed via multilayered stacking up and self-healing based on the film composites, which is prepared using a rolling method. It is demonstrated that the films can assemble into new substance bulk by stacking up through self-healing. The high thermal conductivity is achieved by the highly aligned graphite induced by the rolling process. Result reveals that, being filled with 50% mass fraction of GR, the bulk composites possesses high thermal conductivity of 8.411 Wm(-1) K-1. This work provides a new strategy to prepare recyclable and highly thermally conductive epoxy.
引用
收藏
页码:3698 / 3707
页数:10
相关论文
共 50 条
  • [1] Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability
    Chen, Fang
    Xiao, Hua
    Peng, Zhong Quan
    Zhang, Ze Ping
    Rong, Min Zhi
    Zhang, Ming Qiu
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2021, 4 (04) : 1048 - 1058
  • [2] Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability
    Fang Chen
    Hua Xiao
    Zhong Quan Peng
    Ze Ping Zhang
    Min Zhi Rong
    Ming Qiu Zhang
    Advanced Composites and Hybrid Materials, 2021, 4 : 1048 - 1058
  • [3] Self-healing of cracks in epoxy composites
    Yin, Tao
    Rong, Min Zhi
    Zhang, Ming Qiu
    MULTI-FUNCTIONAL MATERIALS AND STRUCTURES, PTS 1 AND 2, 2008, 47-50 : 282 - +
  • [4] Self-healing thermally conductive adhesives
    Lafont, Ugo
    Moreno-Belle, Christian
    van Zeijl, Henk
    van der Zwaag, Sybrand
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (01) : 67 - 74
  • [5] Thermally Switchable Electrically Conductive Thermoset rGO/PK Self-Healing Composites
    Araya-Hermosilla, Esteban
    Giannetti, Alice
    Lima, Guilherme Macedo R.
    Orozco, Felipe
    Picchioni, Francesco
    Mattoli, Virgilio
    Bose, Ranjita K.
    Pucci, Andrea
    POLYMERS, 2021, 13 (03) : 1 - 19
  • [6] Salt Template Assisted BN Scaffold Fabrication toward Highly Thermally Conductive Epoxy Composites
    Chen, Xuelong
    Lim, Jacob Song Kiat
    Yan, Weili
    Guo, Fang
    Liang, Yen Nan
    Chen, Hui
    Lambourne, Alexis
    Hu, Xiao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) : 16987 - 16996
  • [7] Preparation and Repair Performance of Highly Efficient Self-Healing Polysulfide-Epoxy Materials
    Fang Y.
    Lü M.
    Xu L.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38 (11): : 28 - 33
  • [8] Thermally induced self-healing epoxy/glass laminates with porous layers containing crystallized healing agent
    Szmechtyk, T.
    Sienkiewicz, N.
    Strzelec, K.
    EXPRESS POLYMER LETTERS, 2018, 12 (07): : 640 - 648
  • [9] 'Containers' for self-healing epoxy composites and coating: Trends and advances
    Vijayan, P.
    AlMaadeed, M. A.
    EXPRESS POLYMER LETTERS, 2016, 10 (06): : 506 - 524
  • [10] Preparation and self-healing properties of epoxy vitrimer materials based on imine bonds
    Yan, Tong
    Jiang, Hao
    Pang, Wuting
    He, Tinglei
    Cheng, Meng
    Wang, Zhikun
    Li, Chunling
    Sun, Shuangqing
    Hu, Songqing
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (29)