NAG-Net: Nested attention-guided learning for segmentation of carotid lumen-intima interface and media-adventitia interface

被引:30
作者
Huang, Qinghua [1 ,2 ]
Zhao, Liangrun [1 ,2 ]
Ren, Guanqing [3 ]
Wang, Xiaoyi [3 ]
Liu, Chunying [4 ]
Wang, Wei [5 ]
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence OPt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Mech Engn, Xian 710072, Shaanxi, Peoples R China
[3] Shenzhen Del Med Equipment Co Ltd, Shenzhen 518132, Guangdong, Peoples R China
[4] Hosp Northwestern Polytech Univ, Xian 710072, Shaanxi, Peoples R China
[5] Sun Yat Sen Univ, Affiliated Hosp 1, Guangzhou 510080, Guangdong, Peoples R China
关键词
Medical image segmentation; LII and MAI segmentation; Attention mechanism; Asymmetric encoder-decoder architecture; ULTRASOUND IMAGES; COVID-19; CLASSIFICATION; AUTOMATIC SEGMENTATION; THICKNESS; COMPLEX; FUSION;
D O I
10.1016/j.compbiomed.2023.106718
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cardiovascular diseases (CVD), as the leading cause of death in the world, poses a serious threat to human health. The segmentation of carotid Lumen-intima interface (LII) and Media-adventitia interface (MAI) is a prerequisite for measuring intima-media thickness (IMT), which is of great significance for early screening and prevention of CVD. Despite recent advances, existing methods still fail to incorporate task-related clinical domain knowledge and require complex post-processing steps to obtain fine contours of LII and MAI. In this paper, a nested attention-guided deep learning model (named NAG-Net) is proposed for accurate segmentation of LII and MAI. The NAG-Net consists of two nested sub-networks, the Intima-Media Region Segmentation Network (IMRSN) and the LII and MAI Segmentation Network (LII-MAISN). It innovatively incorporates task -related clinical domain knowledge through the visual attention map generated by IMRSN, enabling LII-MAISN to focus more on the clinician's visual focus region under the same task during segmentation. Moreover, the segmentation results can directly obtain fine contours of LII and MAI through simple refinement without complicated post-processing steps. To further improve the feature extraction ability of the model and reduce the impact of data scarcity, the strategy of transfer learning is also adopted to apply the pretrained weights of VGG-16. In addition, a channel attention-based encoder feature fusion block (EFFB-ATT) is specially designed to achieve efficient representation of useful features extracted by two parallel encoders in LII-MAISN. Extensive experimental results have demonstrated that our proposed NAG-Net outperformed other state-of-the-art methods and achieved the highest performance on all evaluation metrics.
引用
收藏
页数:13
相关论文
共 63 条
[1]  
Bayraktar Z., 2016, P 9 EAI INT C BIOINS, P124
[2]   The Wind Driven Optimization Technique and its Application in Electromagnetics [J].
Bayraktar, Zikri ;
Komurcu, Muge ;
Bossard, Jeremy A. ;
Werner, Douglas H. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (05) :2745-2757
[3]   A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework [J].
Biswas, Mainak ;
Saba, Luca ;
Omerzu, Tomaz ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Viskovic, Klaudija ;
Mavrogeni, Sophie ;
Laird, John R. ;
Pareek, Gyan ;
Miner, Martin ;
Balestrieri, Antonella ;
Sfikakis, Petros P. ;
Protogerou, Athanasios ;
Misra, Durga Prasanna ;
Agarwal, Vikas ;
Kitas, George D. ;
Kolluri, Raghu ;
Sharma, Aditya ;
Viswanathan, Vijay ;
Ruzsa, Zoltan ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
JOURNAL OF DIGITAL IMAGING, 2021, 34 (03) :581-604
[4]   Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment [J].
Biswas, Mainak ;
Saba, Luca ;
Chakrabartty, Shubhro ;
Khanna, Narender N. ;
Song, Hanjung ;
Suri, Harman S. ;
Sfikakis, Petros P. ;
Mavrogeni, Sophie ;
Viskovic, Klaudija ;
Laird, John R. ;
Cuadrado-Godia, Elisa ;
Nicolaides, Andrew ;
Sharma, Aditya ;
Viswanathan, Vijay ;
Protogerou, Athanasios ;
Kitas, George ;
Pareek, Gyan ;
Miner, Martin ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123
[5]   Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort [J].
Biswas, Mainak ;
Kuppili, Venkatanareshbabu ;
Araki, Tadashi ;
Edla, Damodar Reddy ;
Godia, Elisa Cuadrado ;
Saba, Luca ;
Suri, Harman S. ;
Omerzu, Tomaz ;
Laird, John R. ;
Khanna, Narendra N. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 98 :100-117
[6]   YOLACT Real-time Instance Segmentation [J].
Bolya, Daniel ;
Zhou, Chong ;
Xiao, Fanyi ;
Lee, Yong Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9156-9165
[7]  
Cao H., 2021, arXiv
[8]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[9]  
Deng J., 2009, CVPR, P248
[10]   Real-time measurement system for evaluation of the carotid intima-media thickness with a robust edge operator [J].
Faita, Francesco ;
Gernignani, Vincenzo ;
Bianchini, Elisabetta ;
Giannarelli, Chiara ;
Ghiadoni, Lorenzo ;
Demi, Marcello .
JOURNAL OF ULTRASOUND IN MEDICINE, 2008, 27 (09) :1353-1361