Comprehensive physiological, transcriptomic, and metabolomic analysis of the response of Panicum miliaceum L. roots to alkaline stress

被引:7
|
作者
Ma, Qian [1 ]
Wang, Honglu [1 ]
Wu, Enguo [1 ]
Yuan, Yuhao [1 ]
Feng, Yu [1 ]
Zhao, Lin [2 ]
Feng, Baili [1 ]
机构
[1] Northwest A&F Univ, Coll Agron, State Key Lab Crop Stress Biol Arid Areas, Yangling, Shaanxi, Peoples R China
[2] Shaanxi Prov Res Acad Environm Sci, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
alkaline stress; broomcorn millet; metabolome; physiology; transcriptome; ACCUMULATION; SALINE; GROWTH;
D O I
10.1002/ldr.4656
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Alkaline stress disrupts transcriptional expression and causes metabolite accumulation, thus affecting plant growth. However, there are gaps in the response mechanism of plants to alkaline stress at the molecular dimension. Broomcorn millet (Panicum miliaceum L.) is a pioneer plant for stress resistance also is a future smart food crop. To explore the physiological-molecular response and adaptation mechanism of broomcorn millet root to alkaline stress, we conducted physiological, transcriptomic, and metabolomic analyses on roots of two broomcorn millet cultivars (alkaline-sensitive S223 and alkaline-tolerant T289) that were exposed to normal conditions (CK) and alkaline stress (AS) treatments (40 mM and a molar ratio of Na2CO3: NaHCO3 = 1:9) for 7 days. Alkaline stress inhibited mineral uptake in broomcorn millet roots and enhanced the antioxidant enzyme activities, malondialdehyde, and soluble substances, resulting in changes in growth, biomass, and root structure. Correspondingly, differentially expressed genes induced by alkaline stress were prominently enriched in the plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling, phenylpropanoid biosynthesis, ATP binding cassette (ABC) transporters, and other biological pathways. Similar results were obtained from the differentially accumulated metabolites analysis. In addition, joint transcriptome and metabolome analysis indicated that genes of phenylpropanoid and flavonoid biosynthesis pathways were upregulated or downregulated in AS groups, however, the related metabolite accumulations were inhibited. This study integrates multiple methods to uncover the mechanisms of broomcorn millet response to alkaline stress. These findings suggest a new direction for phytoremediation of alkaline lands.
引用
收藏
页码:2912 / 2930
页数:19
相关论文
共 50 条
  • [41] Integrated physiological, transcriptomic and metabolomic analyses of glossy mutant under drought stress in rapeseed ( Brassica napus L.)
    Zhang, Ru
    Gong, Ruolin
    An, Zhanling
    Li, Guangze
    Dai, Chunyan
    Yi, Rong
    Liu, Yaqian
    Dong, Jungang
    Hu, Jihong
    INDUSTRIAL CROPS AND PRODUCTS, 2025, 223
  • [42] Transcriptomic and physiological analyses of Symphytum officinale L. in response to multiple heavy metal stress
    Xu, Yi-fan
    Chen, Da-wei
    Ma, Jing
    Gao, Ruo-chun
    Bai, Jie
    Hou, Qin-zheng
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2024, 277
  • [43] Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress
    Qin, Xiaoya
    Qin, Beibei
    He, Wei
    Chen, Yan
    Yin, Yue
    Cao, Youlong
    An, Wei
    Mu, Zixin
    Qin, Ken
    SUSTAINABILITY, 2022, 14 (19)
  • [44] Diversity analysis of starch physicochemical properties in 95 proso millet (Panicum miliaceum L.) accessions
    Li, Kehu
    Zhang, Tongze
    Narayanamoorthy, Shwetha
    Jin, Can
    Sui, Zhongquan
    Li, Zijun
    Li, Shunguo
    Wu, Kao
    Liu, Guoqing
    Corke, Harold
    FOOD CHEMISTRY, 2020, 324
  • [45] Integrative transcriptomic, metabolomic and physiological analyses revealed the physiological and molecular mechanisms by which potassium regulates the salt tolerance of cotton (Gossypium hirsutum L.) roots
    Ju, Feiyan
    Pang, Jiali
    Sun, Liyuan
    Gu, Jiajia
    Wang, Zhuo
    Wu, Xinyu
    Ali, Saif
    Wang, Youhua
    Zhao, Wenqing
    Wang, Shanshan
    Zhou, Zhiguo
    Chen, Binglin
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 193
  • [46] Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress
    Shan, Zhongying
    Jiang, Yanmiao
    Li, Haiquan
    Guo, Jinjie
    Dong, Ming
    Zhang, Jianan
    Liu, Guoqing
    BMC GENOMICS, 2020, 21 (01)
  • [47] Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress
    Zhongying Shan
    Yanmiao Jiang
    Haiquan Li
    Jinjie Guo
    Ming Dong
    Jianan Zhang
    Guoqing Liu
    BMC Genomics, 21
  • [48] Effects of Drought Stress during the Flowering Period on the Rhizosphere Fungal Diversity of Broomcorn Millet (Panicum miliaceum L.)
    Liu, Yuhan
    Ren, Jiangling
    Hu, Yulu
    Wang, Shu
    Mao, Jiao
    Xu, Yuanmeng
    Wang, Mengyao
    Liu, Sichen
    Qiao, Zhijun
    Cao, Xiaoning
    AGRONOMY-BASEL, 2023, 13 (12):
  • [49] Influences of Natural Antioxidants, Reactive Oxygen Species and Compatible Solutes of Panicum Miliaceum L. Towards Drought Stress
    Ajithkumar, I. Paul
    CELL BIOCHEMISTRY AND BIOPHYSICS, 2023, 81 (01) : 141 - 149
  • [50] Influences of Natural Antioxidants, Reactive Oxygen Species and Compatible Solutes of Panicum Miliaceum L. Towards Drought Stress
    I. Paul Ajithkumar
    Cell Biochemistry and Biophysics, 2023, 81 : 141 - 149