Hardy inequalities on metric measure spaces, III: the case q ≤ p ≤ 0 and applications

被引:2
作者
Kassymov, A. [1 ,4 ,5 ]
Ruzhansky, M. [1 ,2 ]
Suragan, D. [3 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Math, 53 Kabanbay Batyr Ave, Nur Sultan 010000, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin St, Alma Ata 050010, Kazakhstan
[5] Al Farabi Kazakh Natl Univ, 71 Al-Farabi Ave, Alma Ata 050040, Kazakhstan
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 479卷 / 2269期
基金
英国工程与自然科学研究理事会;
关键词
reverse Hardy inequality; metric measure space; reverse Hardy-Littlewood-Sobolev inequality; reverse Stein-Weiss inequality; STEIN-WEISS INEQUALITIES; LITTLEWOOD-SOBOLEV; FRACTIONAL INTEGRALS; SHARP CONSTANTS; EXISTENCE;
D O I
10.1098/rspa.2022.0307
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we obtain a reverse version of the integral Hardy inequality on metric measure space with two negative exponents. For applications we show the reverse Hardy-Littlewood-Sobolev and the Stein-Weiss inequalities with two negative exponents on homogeneous Lie groups and with arbitrary quasi-norm, the result of which appears to be new in the Euclidean space. This work further complements the ranges of p and q (namely, q <= p<0) considered in the work of Ruzhansky & Verma (Ruzhansky & Verma 2019 Proc. R. Soc. A 475, 20180310 (); Ruzhansky & Verma. 2021 Proc. R. Soc. A 477, 20210136 ()), which treated the cases 1<p <= qq, respectively.
引用
收藏
页数:16
相关论文
共 42 条
[31]   LP-CAFFARELLI-KOHN-NIRENBERG TYPE INEQUALITIES ON HOMOGENEOUS GROUPS [J].
Ozawa, Tohru ;
Ruzhansky, Michael ;
Suragan, Durvudkhan .
QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (01) :305-318
[32]   Weighted Hardy's inequalities for negative indices [J].
Prokhorov, DV .
PUBLICACIONS MATEMATIQUES, 2004, 48 (02) :423-443
[33]   Sharp reversed Hardy-Littlewood-Sobolev inequality on R n [J].
Quoc Anh Ngo ;
Van Hoang Nguyen .
ISRAEL JOURNAL OF MATHEMATICS, 2017, 220 (01) :189-223
[34]  
Ruzhansky M., 2018, Trans. Amer. Math. Soc. Ser. B, V5, P32
[35]  
Ruzhansky M., 2019, Hardy Inequalities on Homogeneous Groups: 100 Years of Hardy Inequalities
[36]  
Ruzhansky M, 2018, Arxiv, DOI arXiv:1805.01064
[37]   Hardy inequalities on metric measure spaces, II: the case p &gt; q [J].
Ruzhansky, Michael ;
Verma, Daulti .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2250)
[38]   Hardy inequalities on metric measure spaces [J].
Ruzhansky, Michael ;
Verma, Daulti .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 475 (2223)
[39]   Sobolev Type Inequalities, Euler-Hilbert-Sobolev and Sobolev-Lorentz-Zygmund Spaces on Homogeneous Groups [J].
Ruzhansky, Michael ;
Suragan, Durvudkhan ;
Yessirkegenov, Nurgissa .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (01)
[40]   Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups [J].
Ruzhansky, Michael ;
Suragan, Durvudkhan .
ADVANCES IN MATHEMATICS, 2017, 317 :799-822