Hardy inequalities on metric measure spaces, III: the case q ≤ p ≤ 0 and applications

被引:2
作者
Kassymov, A. [1 ,4 ,5 ]
Ruzhansky, M. [1 ,2 ]
Suragan, D. [3 ]
机构
[1] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[2] Queen Mary Univ London, Sch Math Sci, London, England
[3] Nazarbayev Univ, Sch Sci & Technol, Dept Math, 53 Kabanbay Batyr Ave, Nur Sultan 010000, Kazakhstan
[4] Inst Math & Math Modeling, 125 Pushkin St, Alma Ata 050010, Kazakhstan
[5] Al Farabi Kazakh Natl Univ, 71 Al-Farabi Ave, Alma Ata 050040, Kazakhstan
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2023年 / 479卷 / 2269期
基金
英国工程与自然科学研究理事会;
关键词
reverse Hardy inequality; metric measure space; reverse Hardy-Littlewood-Sobolev inequality; reverse Stein-Weiss inequality; STEIN-WEISS INEQUALITIES; LITTLEWOOD-SOBOLEV; FRACTIONAL INTEGRALS; SHARP CONSTANTS; EXISTENCE;
D O I
10.1098/rspa.2022.0307
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we obtain a reverse version of the integral Hardy inequality on metric measure space with two negative exponents. For applications we show the reverse Hardy-Littlewood-Sobolev and the Stein-Weiss inequalities with two negative exponents on homogeneous Lie groups and with arbitrary quasi-norm, the result of which appears to be new in the Euclidean space. This work further complements the ranges of p and q (namely, q <= p<0) considered in the work of Ruzhansky & Verma (Ruzhansky & Verma 2019 Proc. R. Soc. A 475, 20180310 (); Ruzhansky & Verma. 2021 Proc. R. Soc. A 477, 20210136 ()), which treated the cases 1<p <= qq, respectively.
引用
收藏
页数:16
相关论文
共 42 条
[1]  
Adams R.A., 2003, Sobolev Spaces, Vsecond
[2]  
[Anonymous], 2004, Riemannian geometry (Universitext)
[3]   Functionals for Multilinear Fractional Embedding [J].
Beckner, William .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (01) :1-28
[4]   HARDYS INEQUALITIES WITH INDEXES LESS THAN 1 [J].
BEESACK, PR ;
HEINIG, HP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (03) :532-536
[5]   Reverse Hardy-Littlewood-Sobolev inequalities [J].
Carrillo, Jose A. ;
Delgadino, Matias G. ;
Dolbeault, Jean ;
Frank, Rupert L. ;
Hoffmann, Franca .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 :133-165
[6]   Reverse Stein-Weiss Inequalities on the Upper Half Space and the Existence of Their Extremals [J].
Chen, Lu ;
Lu, Guozhen ;
Tao, Chunxia .
ADVANCED NONLINEAR STUDIES, 2019, 19 (03) :475-494
[7]   REVERSE STEIN-WEISS INEQUALITIES AND EXISTENCE OF THEIR EXTREMAL FUNCTIONS [J].
Chen, Lu ;
Liu, Zhao ;
Lu, Guozhen ;
Tao, Chunxia .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (12) :8429-8450
[8]  
Davies E. B., 1999, Operator Theory: Advances and Applications, V110, P55
[9]   Reversed Hardy-Littewood-Sobolev Inequality [J].
Dou, Jingbo ;
Zhu, Meijun .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (19) :9696-9726
[10]  
Drbek P., 1997, INT SER NUMER MATH, P3, DOI DOI 10.1007/978-3-0348-8942-1_1