Distributed optical fiber biosensor based on optical frequency domain reflectometry

被引:18
|
作者
Hua, Peidong [1 ,2 ,3 ]
Ding, Zhenyang [1 ,2 ,3 ]
Liu, Kun [1 ,2 ,3 ]
Guo, Haohan [1 ,2 ,3 ]
Pan, Ming [1 ,2 ,3 ]
Zhang, Teng [1 ,2 ,3 ]
Li, Sheng [1 ,2 ,3 ]
Jiang, Junfeng [1 ,2 ,3 ]
Liu, Tiegen [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Precis Instruments & Optoelect Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Tianjin Opt Fiber Sensing Engn Ctr, Inst Opt Fiber Sensing, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Key Lab Optoelect Informat Technol, Minist Educ, Tianjin 300072, Peoples R China
来源
关键词
Biosensor; Distributed optical fiber sensing; Distributed optical fiber biosensor; Optical frequency domain reflectometry; Tapered fiber; RAYLEIGH BACKSCATTERING; STRAIN-MEASUREMENT; SURFACE-CHEMISTRY; SENSORS; IMMUNOSENSOR; SENSITIVITY; GRATINGS; ANTIBODY; VIRUS;
D O I
10.1016/j.bios.2023.115184
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In situ acquisition of spatial distribution of biochemical substances is important in cell analysis, cancer detection and other fields. Optical fiber biosensors can achieve label-free, fast and accurate measurements. However, current optical fiber biosensors only acquire single-point of biochemical substance content. In this paper, we present a distributed optical fiber biosensor based on tapered fiber in optical frequency domain reflectometry (OFDR) for the first time. To enhance evanescent field at a relative long sensing range, we fabricate a tapered fiber with a taper waist diameter of 6 mu m and a total stretching length of 140 mm. Then the human IgG layer is coated on the entire tapered region by polydopamine (PDA) -assisted immobilization as the sensing element to achieve to sense anti-human IgG. We measure shifts of the local Rayleigh backscattering spectra (RBS) caused by the refractive index (RI) change of an external medium surrounding a tapered fiber after immunoaffinity interactions by using OFDR. The measurable concentration of anti-human IgG and RBS shift has an excellent linearity in a range from 0 ng/ml to 14 ng/ml with an effective sensing range of 50 mm. The concentration measurement limit of the proposed distributed biosensor is 2 ng/ml for anti-human IgG. Distributed biosensing based on OFDR can locate a concentration change of anti-human IgG with an ultra-high sensing spatial resolution of 680 mu m. The proposed sensor has a potential to realize a micron-level localization of biochemical substances such as cancer cells, which will open a door to transform single-point biosensor to distributed biosensor.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Optical frequency domain reflectometry based on self-sweeping fiber laser
    Tkachenko, Alina Yu.
    Lobach, Ivan A.
    Kablukov, Sergey I.
    SEVENTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS (EWOFS 2019), 2019, 11199
  • [32] Radiation effects on optical frequency domain reflectometry fiber-based sensor
    Rizzolo, S.
    Marin, E.
    Cannas, M.
    Boukenter, A.
    Ouerdane, Y.
    Perisse, J.
    Mace, J. -R.
    Bauer, S.
    Marcandella, C.
    Paillet, P.
    Girard, S.
    OPTICS LETTERS, 2015, 40 (20) : 4571 - 4574
  • [33] Accurate measurement of optical fiber time delay based on frequency domain reflectometry
    Zhao Tian-Ze
    Yang Su-Hui
    Li Kun
    Gao Yan-Ze
    Wang Xin
    Zhang Jin-Ying
    Li Zhuo
    Zhao Yi-Ming
    Liu Yu-Zhe
    ACTA PHYSICA SINICA, 2021, 70 (08)
  • [34] Multiparameter Distributed Fiber Sensor Based on Optical Frequency-Domain Reflectometry and Bandwidth-Division Multiplexing
    Naeem, Khurram
    Lee, Changwon
    Linganna, Kadathala
    Kang, Chul
    Oh, Myoung-Kyu
    Yu, Nan Ei
    Kang, Hoonsoo
    Kim, Bok Hyeon
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25703 - 25709
  • [35] Optical Frequency-Domain Reflectometry Based Distributed Temperature Sensing Using Rayleigh Backscattering Enhanced Fiber
    Lu, Ziyi
    Feng, Ting
    Li, Fang
    Yao, Xiaotian Steve
    SENSORS, 2023, 23 (12)
  • [36] Fiber-optic distributed temperature sensor using incoherent optical frequency domain reflectometry
    Karamehmedovic, E
    Glombitza, U
    EMERGING OPTOELECTRONIC APPLICATIONS, 2004, 5363 : 107 - 115
  • [37] Interferometric optical time-domain reflectometry for distributed optical-fiber sensing
    Shatalin, SV
    Treschikov, VN
    Rogers, AJ
    APPLIED OPTICS, 1998, 37 (24): : 5600 - 5604
  • [38] Optical frequency domain reflectometry with a narrow linewidth fiber laser
    Oberson, P
    Huttner, B
    Guinnard, O
    Guinnard, L
    Ribordy, G
    Gisin, N
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (07) : 867 - 869
  • [39] Doppler optical frequency domain reflectometry for remote fiber sensing
    Koeppel, Max
    Sharma, Abhinav
    Podschus, Jasper
    Sundaramahalingam, Sanju
    Joly, Nicolas Y.
    Xie, Shangran
    Russell, Philip St J.
    Schmauss, Bernhard
    OPTICS EXPRESS, 2021, 29 (10) : 14615 - 14629
  • [40] Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers
    Liehr, Sascha
    Noether, Nils
    Krebber, Katerina
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (01)