A quantitative Erd bs-Fuchs type result for multivariate linear forms

被引:0
作者
Yan, Xiao-Hui [1 ]
Li, Ya-Li [2 ]
机构
[1] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
[2] Henan Univ, Sch Math & Stat, Kaifeng 475001, Peoples R China
基金
中国博士后科学基金;
关键词
Representation function; Erd bs-Fuchs theorem; Generating function; k ? n; THEOREM;
D O I
10.1016/j.disc.2023.113335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an infinite sequence of positive integers and let m = {(k1, m1), middot middot middot, (kl, ml)} be a set of integer tuples such that gcd(m1, m2, middot middot middot, ml) > 1. Denote by Rm(A, n) the number of different solutions of the equation k1(a1,1 + middot middot middot + a1,m1) + middot middot middot + kl(al,1 + middot middot middot + al,ml) <= n with ai, j E A. In 2013, Rue proved that for every epsilon > 0 the function Rm(A, n) = cn + O (n1/4-epsilon) cannot hold for any constant c > 0. Recently, we improved this bound to o(n1/4). In this paper, we obtain a stronger version about this result.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 19 条
  • [1] An Erdos-Fuchs theorem for ordered representation functions
    Cao-Labora, Gonzalo
    Rue, Juanjo
    Spiegel, Christoph
    [J]. RAMANUJAN JOURNAL, 2021, 56 (01) : 183 - 201
  • [2] A generalization of the classical circle problem
    Chen, Yong-Gao
    Tang, Min
    [J]. ACTA ARITHMETICA, 2012, 152 (03) : 279 - 290
  • [3] A quantitative Erdos-Fuchs theorem and its generalization
    Chen, Yong-Gao
    Tang, Min
    [J]. ACTA ARITHMETICA, 2011, 149 (02) : 171 - 180
  • [4] On a question of Sarkozy and Sos for bilinear forms
    Cilleruelo, Javier
    Rue, Juanjo
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 274 - 280
  • [5] On the Eras-Fuchs theorem
    Dai, Li-Xia
    Pan, Hao
    [J]. ACTA ARITHMETICA, 2019, 189 (02) : 147 - 163
  • [6] An oscillation theorem on the additive representative function over N
    Dai, Lixia
    Pan, Hao
    [J]. JOURNAL OF NUMBER THEORY, 2020, 216 : 157 - 173
  • [7] Erdos P., 1956, Journal of London Mathematical Society, V31, P67
  • [8] An improvement of an extension of a theorem of Erdos and Fuchs
    Horváth, G
    [J]. ACTA MATHEMATICA HUNGARICA, 2004, 104 (1-2) : 27 - 37
  • [9] On a theorem of Erdos and Fuchs
    Horváth, G
    [J]. ACTA ARITHMETICA, 2002, 103 (04) : 321 - 328
  • [10] On a generalization of a theorem of Erdos and Fuchs
    Horváth, G
    [J]. ACTA MATHEMATICA HUNGARICA, 2001, 92 (1-2) : 83 - 110