An Artificial Neural Network for Solar Energy Prediction and Control Using Jaya-SMC

被引:10
作者
Jlidi, Mokhtar [1 ]
Hamidi, Faical [1 ]
Barambones, Oscar [2 ]
Abbassi, Rabeh [3 ]
Jerbi, Houssem [4 ]
Aoun, Mohamed [1 ]
Karami-Mollaee, Ali [5 ]
机构
[1] Univ Gabes, Lab Modelisat Anal & Commande Syst, LR16ES22, Gabes, Tunisia
[2] Univ Basque Country, UPV, EHU, Automat Control & Syst Engn Dept, Nieves Cano 12, Vitoria 01006, Spain
[3] Univ Hail, Coll Engn, Dept Elect Engn, Hail 1234, Saudi Arabia
[4] Univ Hail, Coll Engn, Dept Ind Engn, Hail 1234, Saudi Arabia
[5] Hakim Sabzevari Univ, Fac Elect & Comp Engn, Sabzevar 9618676115, Iran
关键词
JAYA algorithm; forecasting; artificial neural networks; sliding mode control; PEMFC; MPPT; SEPIC chopper; POWER POINT TRACKING; ALGORITHM;
D O I
10.3390/electronics12030592
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, researchers have focused on improving the efficiency of photovoltaic systems, as they have an extremely low efficiency compared to fossil fuels. An obvious issue associated with photovoltaic systems (PVS) is the interruption of power generation caused by changes in solar radiation and temperature. As a means of improving the energy efficiency performance of such a system, it is necessary to predict the meteorological conditions that affect PV modules. As part of the proposed research, artificial neural networks (ANNs) will be used for the purpose of predicting the PV system's current and voltage by predicting the PV system's operating temperature and radiation, as well as using JAYA-SMC hybrid control in the search for the MPP and duty cycle single-ended primary-inductor converter (SEPIC) that supplies a DC motor. Data sets of size 60538 were used to predict temperature and solar radiation. The data set had been collected from the Department of Systems Engineering and Automation at the Vitoria School of Engineering of the University of the Basque Country. Analyses and numerical simulations showed that the technique was highly effective. In combination with JAYA-SMC hybrid control, the proposed method enabled an accurate estimation of maximum power and robustness with reasonable generality and accuracy (regression (R) = 0.971, mean squared error (MSE) = 0.003). Consequently, this study provides support for energy monitoring and control.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] SOLAR ENERGY CONTROL AND POWER QUALITY IMPROVEMENT USING MULTILAYER FEED FORWARD NEURAL NETWORK
    Dehini, R.
    Berbaoui, B.
    JOURNAL OF THERMAL ENGINEERING, 2018, 4 (03): : 1954 - 1962
  • [42] Prediction of dynamic impedances functions using an Artificial Neural Network (ANN)
    Badreddine, Sbartai
    Kamel, Goudjil
    PROGRESS IN CIVIL ENGINEERING, PTS 1-4, 2012, 170-173 : 3588 - 3593
  • [43] Crop Prediction Using Artificial Neural Network and Support Vector Machine
    Fegade, Tanuja K.
    Pawar, B. V.
    DATA MANAGEMENT, ANALYTICS AND INNOVATION, ICDMAI 2019, VOL 2, 2020, 1016 : 311 - 324
  • [44] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75
  • [45] Spatial Prediction of Ground Subsidence Susceptibility Using an Artificial Neural Network
    Saro Lee
    Inhye Park
    Jong-Kuk Choi
    Environmental Management, 2012, 49 : 347 - 358
  • [46] Prediction of Photovoltaic Panels Output Performance Using Artificial Neural Network
    Loukriz, Abdelouadoud
    Saigaa, Djamel
    Kherbachi, Abdelhammid
    Koriker, Mustapha
    Bendib, Ahmed
    Drif, Mahmoud
    INTERNATIONAL JOURNAL OF ENERGY OPTIMIZATION AND ENGINEERING, 2022, 11 (01)
  • [47] Pharmaceutical plant machine availability prediction using Artificial Neural Network
    Garg, Deepika
    Roy, Nihar Ranjan
    Khanna, Ashish
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2022, 16 (02): : 325 - 335
  • [48] On-line Voltage Instability Prediction using an Artificial Neural Network
    Hagmar, Hannes
    Le Anh Tuan
    Carlson, Ola
    Eriksson, Robert
    2019 IEEE MILAN POWERTECH, 2019,
  • [49] Determination of Power Losses in Solar Panels Using Artificial Neural Network
    Jazayeri, Kian
    Uysal, Sener
    Jazayeri, Moein
    AFRICON, 2013, 2013, : 29 - 34
  • [50] Prediction of the efficiency in the water industry: An artificial neural network approach
    Molinos-Senante, Maria
    Maziotis, Alexandros
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 160 : 41 - 48