Additive Bayesian Network Modeling with the R Package abn

被引:6
作者
Kratzer, Gilles [1 ]
Lewis, Fraser [2 ]
Comin, Arianna [3 ]
Pittavino, Marta [4 ]
Furrer, Reinhard [1 ]
机构
[1] Univ Zurich, Zurich, Switzerland
[2] GSK Pharmaceut Mfg, Brentford, England
[3] Swedish Natl Vet Inst, Uppsala, Sweden
[4] Univ Geneva, Geneva, Switzerland
来源
JOURNAL OF STATISTICAL SOFTWARE | 2023年 / 105卷 / 08期
关键词
Keywords; structure learning; graphical models; greedy search; exact search; scoring algo; rithm; GLM; graph theory; APPROXIMATE INFERENCE; GRAPHICAL MODELS; INFORMATION;
D O I
10.18637/jss.v105.i08
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The R package abn is designed to fit additive Bayesian network models to observational datasets and contains routines to score Bayesian networks based on Bayesian or information theoretic formulations of generalized linear models. It is equipped with exact search and greedy search algorithms to select the best network, and supports continuous, discrete and count data in the same model and input of prior knowledge at a structural level. The Bayesian implementation supports random effects to control for one-layer clustering. In this paper, we give an overview of the methodology and illustrate the package's functionality using a veterinary dataset concerned with respiratory diseases in commercial swine production.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 71 条
  • [1] Bayesian Graphical Models for STructural Vector Autoregressive Processes
    Ahelegbey, Daniel Felix
    Billio, Monica
    Casarin, Roberto
    [J]. JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (02) : 357 - 386
  • [2] [Anonymous], 2001, COMPUT SCI STAT
  • [3] Arroyo-Figueroa G, 1999, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, P13
  • [4] Balov N, 2022, Catnet: categorical Bayesian network inference
  • [5] Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
  • [6] USING MUTUAL INFORMATION FOR SELECTING FEATURES IN SUPERVISED NEURAL-NET LEARNING
    BATTITI, R
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (04): : 537 - 550
  • [7] Boerlage B, 1992, THESIS U BRITISH COL
  • [8] Boettcher S., 2003, Journal of Statistical Software, V8, P1, DOI [DOI 10.18637/JSS.V008.I20, 10.18637/jss.v008.i20]
  • [9] Bouckaert R.R., 2008, Artificial Intelligence Tools, V11, P369, DOI DOI 10.1201/B10391-16
  • [10] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25