A Deep Learning System for Automated Quality Evaluation of Optic Disc Photographs in Neuro-Ophthalmic Disorders

被引:4
作者
Chan, Ebenezer [1 ,2 ]
Tang, Zhiqun [1 ]
Najjar, Raymond P. P. [1 ,2 ,3 ,4 ]
Narayanaswamy, Arun [1 ,5 ]
Sathianvichitr, Kanchalika [1 ]
Newman, Nancy J. J. [6 ,7 ]
Biousse, Valerie [6 ,7 ]
Milea, Dan [1 ,2 ,8 ,9 ,10 ]
机构
[1] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore 169856, Singapore
[2] Duke NUS Sch Med, Singapore 169857, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore 117597, Singapore
[4] Natl Univ Singapore, Ctr Innovat & Precis Eye Hlth, Singapore 119077, Singapore
[5] Singapore Natl Eye Ctr, Glaucoma Dept, Singapore 168751, Singapore
[6] Emory Univ, Dept Ophthalmol, Atlanta, GA 30322 USA
[7] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA
[8] Univ Copenhagen, Dept Ophthalmol, Rigshosp, DK-2600 Copenhagen, Denmark
[9] Angers Univ Hosp, Dept Ophthalmol, F-49100 Angers, France
[10] Singapore Natl Eye Ctr, Neuroophthalmol Dept, Singapore 168751, Singapore
基金
英国医学研究理事会;
关键词
retinal image quality assessment; artificial intelligence; deep learning; optic nerve head; papilledema; DIABETIC-RETINOPATHY; ARTIFICIAL-INTELLIGENCE; MODEL;
D O I
10.3390/diagnostics13010160
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The quality of ocular fundus photographs can affect the accuracy of the morphologic assessment of the optic nerve head (ONH), either by humans or by deep learning systems (DLS). In order to automatically identify ONH photographs of optimal quality, we have developed, trained, and tested a DLS, using an international, multicentre, multi-ethnic dataset of 5015 ocular fundus photographs from 31 centres in 20 countries participating to the Brain and Optic Nerve Study with Artificial Intelligence (BONSAI). The reference standard in image quality was established by three experts who independently classified photographs as of "good", "borderline", or "poor" quality. The DLS was trained on 4208 fundus photographs and tested on an independent external dataset of 807 photographs, using a multi-class model, evaluated with a one-vs-rest classification strategy. In the external-testing dataset, the DLS could identify with excellent performance "good" quality photographs (AUC = 0.93 (95% CI, 0.91-0.95), accuracy = 91.4% (95% CI, 90.0-92.9%), sensitivity = 93.8% (95% CI, 92.5-95.2%), specificity = 75.9% (95% CI, 69.7-82.1%) and "poor" quality photographs (AUC = 1.00 (95% CI, 0.99-1.00), accuracy = 99.1% (95% CI, 98.6-99.6%), sensitivity = 81.5% (95% CI, 70.6-93.8%), specificity = 99.7% (95% CI, 99.6-100.0%). "Borderline" quality images were also accurately classified (AUC = 0.90 (95% CI, 0.88-0.93), accuracy = 90.6% (95% CI, 89.1-92.2%), sensitivity = 65.4% (95% CI, 56.6-72.9%), specificity = 93.4% (95% CI, 92.1-94.8%). The overall accuracy to distinguish among the three classes was 90.6% (95% CI, 89.1-92.1%), suggesting that this DLS could select optimal quality fundus photographs in patients with neuro-ophthalmic and neurological disorders affecting the ONH.
引用
收藏
页数:13
相关论文
共 35 条
  • [21] Neuroimaging in Patients Referred to a Neuro-ophthalmology Service
    McClelland, Collin
    Van Stavern, Gregory P.
    Shepherd, J. Banks
    Gordon, Mae
    Huecker, Julia
    [J]. OPHTHALMOLOGY, 2012, 119 (08) : 1701 - 1704
  • [22] Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs
    Milea, D.
    Najjar, R. P.
    Zhubo, J.
    Ting, D.
    Vasseneix, C.
    Xu, X.
    Fard, M. Aghsaei
    Fonseca, P.
    Vanikieti, K.
    Lagreze, W. A.
    La Morgia, C.
    Cheung, C. Y.
    Hamann, S.
    Chiquet, C.
    Sanda, N.
    Yang, H.
    Mejico, L. J.
    Rougier, M-B
    Kho, R.
    Thi Ha Chau, T.
    Singhal, S.
    Gohier, P.
    Clermont-Vignal, C.
    Cheng, C-Y
    Jonas, J. B.
    Yu-Wai-Man, P.
    Fraser, C. L.
    Chen, J. J.
    Ambika, S.
    Miller, N. R.
    Liu, Y.
    Newman, N. J.
    Wong, T. Y.
    Biousse, V
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) : 1687 - 1695
  • [23] Milea L, 2020, GitHub Repository
  • [24] Diagnostic Error in Neuro-ophthalmology: Avenues to Improve
    Muro-Fuentes, Elena A.
    Stunkel, Leanne
    [J]. CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2022, 22 (04) : 243 - 256
  • [25] The impact of the Health Technology Board for Scotland's grading model on referrals to ophthalmology services
    Philip, S
    Cowie, LM
    Olson, JA
    [J]. BRITISH JOURNAL OF OPHTHALMOLOGY, 2005, 89 (07) : 891 - 896
  • [26] Multivariate Regression-Based Convolutional Neural Network Model for Fundus Image Quality Assessment
    Raj, Aditya
    Shah, Nisarg A.
    Tiwari, Anil Kumar
    Martini, Maria G.
    [J]. IEEE ACCESS, 2020, 8 : 57810 - 57821
  • [27] Fundus image quality assessment: survey, challenges, and future scope
    Raj, Aditya
    Tiwari, Anil Kumar
    Martini, Maria G.
    [J]. IET IMAGE PROCESSING, 2019, 13 (08) : 1211 - 1224
  • [28] Automated Quality Assessment of Colour Fundus Images for Diabetic Retinopathy Screening in Telemedicine
    Saha, Sajib Kumar
    Fernando, Basura
    Cuadros, Jorge
    Xiao, Di
    Kanagasingam, Yogesan
    [J]. JOURNAL OF DIGITAL IMAGING, 2018, 31 (06) : 869 - 878
  • [29] The effectiveness of screening for diabetic retinopathy by digital imaging photography and technician ophthalmoscopy
    Scanlon, PH
    Malhotra, R
    Thomas, G
    Foy, C
    Kirkpatrick, JN
    Lewis-Barned, N
    Harney, B
    Aldington, SJ
    [J]. DIABETIC MEDICINE, 2003, 20 (06) : 467 - 474
  • [30] Domain-invariant interpretable fundus image quality assessment
    Shen, Yaxin
    Sheng, Bin
    Fang, Ruogu
    Li, Huating
    Dai, Ling
    Stolte, Skylar
    Qin, Jing
    Jia, Weiping
    Shen, Dinggang
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 61 (61)