A Deep Learning System for Automated Quality Evaluation of Optic Disc Photographs in Neuro-Ophthalmic Disorders

被引:4
作者
Chan, Ebenezer [1 ,2 ]
Tang, Zhiqun [1 ]
Najjar, Raymond P. P. [1 ,2 ,3 ,4 ]
Narayanaswamy, Arun [1 ,5 ]
Sathianvichitr, Kanchalika [1 ]
Newman, Nancy J. J. [6 ,7 ]
Biousse, Valerie [6 ,7 ]
Milea, Dan [1 ,2 ,8 ,9 ,10 ]
机构
[1] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore 169856, Singapore
[2] Duke NUS Sch Med, Singapore 169857, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore 117597, Singapore
[4] Natl Univ Singapore, Ctr Innovat & Precis Eye Hlth, Singapore 119077, Singapore
[5] Singapore Natl Eye Ctr, Glaucoma Dept, Singapore 168751, Singapore
[6] Emory Univ, Dept Ophthalmol, Atlanta, GA 30322 USA
[7] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA
[8] Univ Copenhagen, Dept Ophthalmol, Rigshosp, DK-2600 Copenhagen, Denmark
[9] Angers Univ Hosp, Dept Ophthalmol, F-49100 Angers, France
[10] Singapore Natl Eye Ctr, Neuroophthalmol Dept, Singapore 168751, Singapore
基金
英国医学研究理事会;
关键词
retinal image quality assessment; artificial intelligence; deep learning; optic nerve head; papilledema; DIABETIC-RETINOPATHY; ARTIFICIAL-INTELLIGENCE; MODEL;
D O I
10.3390/diagnostics13010160
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The quality of ocular fundus photographs can affect the accuracy of the morphologic assessment of the optic nerve head (ONH), either by humans or by deep learning systems (DLS). In order to automatically identify ONH photographs of optimal quality, we have developed, trained, and tested a DLS, using an international, multicentre, multi-ethnic dataset of 5015 ocular fundus photographs from 31 centres in 20 countries participating to the Brain and Optic Nerve Study with Artificial Intelligence (BONSAI). The reference standard in image quality was established by three experts who independently classified photographs as of "good", "borderline", or "poor" quality. The DLS was trained on 4208 fundus photographs and tested on an independent external dataset of 807 photographs, using a multi-class model, evaluated with a one-vs-rest classification strategy. In the external-testing dataset, the DLS could identify with excellent performance "good" quality photographs (AUC = 0.93 (95% CI, 0.91-0.95), accuracy = 91.4% (95% CI, 90.0-92.9%), sensitivity = 93.8% (95% CI, 92.5-95.2%), specificity = 75.9% (95% CI, 69.7-82.1%) and "poor" quality photographs (AUC = 1.00 (95% CI, 0.99-1.00), accuracy = 99.1% (95% CI, 98.6-99.6%), sensitivity = 81.5% (95% CI, 70.6-93.8%), specificity = 99.7% (95% CI, 99.6-100.0%). "Borderline" quality images were also accurately classified (AUC = 0.90 (95% CI, 0.88-0.93), accuracy = 90.6% (95% CI, 89.1-92.2%), sensitivity = 65.4% (95% CI, 56.6-72.9%), specificity = 93.4% (95% CI, 92.1-94.8%). The overall accuracy to distinguish among the three classes was 90.6% (95% CI, 89.1-92.1%), suggesting that this DLS could select optimal quality fundus photographs in patients with neuro-ophthalmic and neurological disorders affecting the ONH.
引用
收藏
页数:13
相关论文
共 35 条
[1]   Web-based screening for diabetic retinopathy in a primary care population: The EyeCheck project [J].
Abramoff, MD ;
Suttorp-Schulten, MSA .
TELEMEDICINE JOURNAL AND E-HEALTH, 2005, 11 (06) :668-674
[2]   Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema [J].
Ahn, Jin Mo ;
Kim, Sangsoo ;
Ahn, Kwang-Sung ;
Cho, Sung-Hoon ;
Kim, Ungsoo S. .
BMC OPHTHALMOLOGY, 2019, 19 (01)
[3]   Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma [J].
Angel Zapata, Miguel ;
Royo-Fibla, Didac ;
Font, Octavi ;
Ignacio Vela, Jose ;
Marcantonio, Ivanna ;
Ulises Moya-Sanchez, Eduardo ;
Sanchez-Perez, Abraham ;
Garcia-Gasulla, Dario ;
Cortes, Ulises ;
Ayguade, Eduard ;
Labarta, Jesus .
CLINICAL OPHTHALMOLOGY, 2020, 14 :419-429
[4]   A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy [J].
Beede, Emma ;
Baylor, Elizabeth ;
Hersch, Fred ;
Iurchenko, Anna ;
Wilcox, Lauren ;
Ruamviboonsuk, Paisan ;
Vardoulakis, Laura M. .
PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
[5]   Optic Disc Classification by Deep Learning versus Expert Neuro-Ophthalmologists [J].
Biousse, Valerie ;
Newman, Nancy J. ;
Najjar, Raymond P. ;
Vasseneix, Caroline ;
Xu, Xinxing ;
Ting, Daniel S. ;
Milea, Leonard B. ;
Hwang, Jeong-Min ;
Kim, Dong Hyun ;
Yang, Hee Kyung ;
Hamann, Steffen ;
Chen, John J. ;
Liu, Yong ;
Wong, Tien Yin ;
Milea, Dan .
ANNALS OF NEUROLOGY, 2020, 88 (04) :785-795
[6]   Biomedical image augmentation using Augmentor [J].
Bloice, Marcus D. ;
Roth, Peter M. ;
Holzinger, Andreas .
BIOINFORMATICS, 2019, 35 (21) :4522-4524
[7]   Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment [J].
Bosse, Sebastian ;
Maniry, Dominique ;
Mueller, Klaus-Robert ;
Wiegand, Thomas ;
Samek, Wojciech .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :206-219
[8]   Quality and and content analysis of fundus images using deep learning [J].
Chalakkal, Renoh Johnson ;
Abdulla, Waleed Habib ;
Thulaseedharan, Sinumol Sukumaran .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 108 :317-331
[9]   Deep Learning for Retinal Image Quality Assessment of Optic Nerve Head Disorders [J].
Chan, Ebenezer Jia Jun ;
Najjar, Raymond P. ;
Tang, Zhiqun ;
Milea, Dan .
ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2021, 10 (03) :282-288
[10]   Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs [J].
Christopher, Mark ;
Beighith, Akram ;
Bowd, Christopher ;
Proudfoot, James A. ;
Goldbaum, Michael H. ;
Weinreb, Robert N. ;
Girkin, Christopher A. ;
Liebmann, Jeffrey M. ;
Zangwill, Linda M. .
SCIENTIFIC REPORTS, 2018, 8