A Deep Learning System for Automated Quality Evaluation of Optic Disc Photographs in Neuro-Ophthalmic Disorders

被引:4
作者
Chan, Ebenezer [1 ,2 ]
Tang, Zhiqun [1 ]
Najjar, Raymond P. P. [1 ,2 ,3 ,4 ]
Narayanaswamy, Arun [1 ,5 ]
Sathianvichitr, Kanchalika [1 ]
Newman, Nancy J. J. [6 ,7 ]
Biousse, Valerie [6 ,7 ]
Milea, Dan [1 ,2 ,8 ,9 ,10 ]
机构
[1] Singapore Natl Eye Ctr, Singapore Eye Res Inst, Singapore 169856, Singapore
[2] Duke NUS Sch Med, Singapore 169857, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Ophthalmol, Singapore 117597, Singapore
[4] Natl Univ Singapore, Ctr Innovat & Precis Eye Hlth, Singapore 119077, Singapore
[5] Singapore Natl Eye Ctr, Glaucoma Dept, Singapore 168751, Singapore
[6] Emory Univ, Dept Ophthalmol, Atlanta, GA 30322 USA
[7] Emory Univ, Dept Neurol, Atlanta, GA 30322 USA
[8] Univ Copenhagen, Dept Ophthalmol, Rigshosp, DK-2600 Copenhagen, Denmark
[9] Angers Univ Hosp, Dept Ophthalmol, F-49100 Angers, France
[10] Singapore Natl Eye Ctr, Neuroophthalmol Dept, Singapore 168751, Singapore
基金
英国医学研究理事会;
关键词
retinal image quality assessment; artificial intelligence; deep learning; optic nerve head; papilledema; DIABETIC-RETINOPATHY; ARTIFICIAL-INTELLIGENCE; MODEL;
D O I
10.3390/diagnostics13010160
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The quality of ocular fundus photographs can affect the accuracy of the morphologic assessment of the optic nerve head (ONH), either by humans or by deep learning systems (DLS). In order to automatically identify ONH photographs of optimal quality, we have developed, trained, and tested a DLS, using an international, multicentre, multi-ethnic dataset of 5015 ocular fundus photographs from 31 centres in 20 countries participating to the Brain and Optic Nerve Study with Artificial Intelligence (BONSAI). The reference standard in image quality was established by three experts who independently classified photographs as of "good", "borderline", or "poor" quality. The DLS was trained on 4208 fundus photographs and tested on an independent external dataset of 807 photographs, using a multi-class model, evaluated with a one-vs-rest classification strategy. In the external-testing dataset, the DLS could identify with excellent performance "good" quality photographs (AUC = 0.93 (95% CI, 0.91-0.95), accuracy = 91.4% (95% CI, 90.0-92.9%), sensitivity = 93.8% (95% CI, 92.5-95.2%), specificity = 75.9% (95% CI, 69.7-82.1%) and "poor" quality photographs (AUC = 1.00 (95% CI, 0.99-1.00), accuracy = 99.1% (95% CI, 98.6-99.6%), sensitivity = 81.5% (95% CI, 70.6-93.8%), specificity = 99.7% (95% CI, 99.6-100.0%). "Borderline" quality images were also accurately classified (AUC = 0.90 (95% CI, 0.88-0.93), accuracy = 90.6% (95% CI, 89.1-92.2%), sensitivity = 65.4% (95% CI, 56.6-72.9%), specificity = 93.4% (95% CI, 92.1-94.8%). The overall accuracy to distinguish among the three classes was 90.6% (95% CI, 89.1-92.1%), suggesting that this DLS could select optimal quality fundus photographs in patients with neuro-ophthalmic and neurological disorders affecting the ONH.
引用
收藏
页数:13
相关论文
共 35 条
  • [1] Web-based screening for diabetic retinopathy in a primary care population: The EyeCheck project
    Abramoff, MD
    Suttorp-Schulten, MSA
    [J]. TELEMEDICINE JOURNAL AND E-HEALTH, 2005, 11 (06): : 668 - 674
  • [2] Accuracy of machine learning for differentiation between optic neuropathies and pseudopapilledema
    Ahn, Jin Mo
    Kim, Sangsoo
    Ahn, Kwang-Sung
    Cho, Sung-Hoon
    Kim, Ungsoo S.
    [J]. BMC OPHTHALMOLOGY, 2019, 19 (01)
  • [3] Artificial Intelligence to Identify Retinal Fundus Images, Quality Validation, Laterality Evaluation, Macular Degeneration, and Suspected Glaucoma
    Angel Zapata, Miguel
    Royo-Fibla, Didac
    Font, Octavi
    Ignacio Vela, Jose
    Marcantonio, Ivanna
    Ulises Moya-Sanchez, Eduardo
    Sanchez-Perez, Abraham
    Garcia-Gasulla, Dario
    Cortes, Ulises
    Ayguade, Eduard
    Labarta, Jesus
    [J]. CLINICAL OPHTHALMOLOGY, 2020, 14 : 419 - 429
  • [4] A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy
    Beede, Emma
    Baylor, Elizabeth
    Hersch, Fred
    Iurchenko, Anna
    Wilcox, Lauren
    Ruamviboonsuk, Paisan
    Vardoulakis, Laura M.
    [J]. PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
  • [5] Optic Disc Classification by Deep Learning versus Expert Neuro-Ophthalmologists
    Biousse, Valerie
    Newman, Nancy J.
    Najjar, Raymond P.
    Vasseneix, Caroline
    Xu, Xinxing
    Ting, Daniel S.
    Milea, Leonard B.
    Hwang, Jeong-Min
    Kim, Dong Hyun
    Yang, Hee Kyung
    Hamann, Steffen
    Chen, John J.
    Liu, Yong
    Wong, Tien Yin
    Milea, Dan
    [J]. ANNALS OF NEUROLOGY, 2020, 88 (04) : 785 - 795
  • [6] Biomedical image augmentation using Augmentor
    Bloice, Marcus D.
    Roth, Peter M.
    Holzinger, Andreas
    [J]. BIOINFORMATICS, 2019, 35 (21) : 4522 - 4524
  • [7] Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
    Bosse, Sebastian
    Maniry, Dominique
    Mueller, Klaus-Robert
    Wiegand, Thomas
    Samek, Wojciech
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) : 206 - 219
  • [8] Quality and and content analysis of fundus images using deep learning
    Chalakkal, Renoh Johnson
    Abdulla, Waleed Habib
    Thulaseedharan, Sinumol Sukumaran
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 108 : 317 - 331
  • [9] Deep Learning for Retinal Image Quality Assessment of Optic Nerve Head Disorders
    Chan, Ebenezer Jia Jun
    Najjar, Raymond P.
    Tang, Zhiqun
    Milea, Dan
    [J]. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY, 2021, 10 (03): : 282 - 288
  • [10] Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs
    Christopher, Mark
    Beighith, Akram
    Bowd, Christopher
    Proudfoot, James A.
    Goldbaum, Michael H.
    Weinreb, Robert N.
    Girkin, Christopher A.
    Liebmann, Jeffrey M.
    Zangwill, Linda M.
    [J]. SCIENTIFIC REPORTS, 2018, 8