On weighted compactness of commutators of square function and semi-group maximal function associated to Schrodinger operators

被引:2
作者
Wang, Shifen [1 ,2 ,3 ]
Xue, Qingying [4 ]
Zhang, Chunmei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Schrodinger operator; Littlewood-Paley function; Semi-group maximal operator; Commutator; Compactness; INTEGRAL-OPERATORS; BILINEAR OPERATORS; HOMOGENEOUS TYPE; SPACES; BOUNDEDNESS;
D O I
10.1007/s13348-022-00381-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta be the laplacian operator on R-n and V be a nonnegative potential satisfying an appropriate reverse Holder inequality. The Littlewood-Paley square function g associated with the Schrodinger operator L = -Delta + V is defined by: g(f)(x) = (integral(infinity)(0) vertical bar d/dte(-tL)(f)(x)vertical bar(2)tdt)(1/2). In this paper, we show that the commutators of g are compact operators on L-p(w) for 1 < p < infinity if b is an element of CMO theta(rho ) and w is an element of A(p)(rho,theta) , where CMO theta(rho)(R-n) denotes the closure of C-c(infinity) (R-n) in the BMO theta(rho) topology and A(p)(rho,theta) is a weighted class which is more larger than Muckenhoupt A(p) weight class. An extra weight condition in a previous weighted compactness result is removed for the commutators of the semi-group maximal function defined by T*(f)(x) = sup(t>0) vertical bar e(-tL)f(x)vertical bar.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 32 条
[21]  
Tang L., ARXIV
[22]   Weighted norm inequalities for Schrodinger type operators [J].
Tang, Lin .
FORUM MATHEMATICUM, 2015, 27 (04) :2491-2532
[23]   XMO and Weighted Compact Bilinear Commutators [J].
Tao, Jin ;
Xue, Qingying ;
Yang, Dachun ;
Yuan, Wen .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (03)
[24]   On compactness of commutators of multiplication and bilinear pseudodifferential operators and a new subspace of BMO [J].
Torres, Rodolfo H. ;
Xue, Qingying .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) :939-956
[25]  
Uchiyama A., 1978, Tohoku Math. J, V30, P163
[26]  
Wang S., 1987, Chin. Ann. Math., Ser. A, V8, P475
[27]   On weighted compactness of commutator of semi-group maximal function and fractional integrals associated to Schrodinger operators [J].
Wang, Shifen ;
Xue, Qingying .
REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (03) :871-893
[28]   Weighted Frechet-Kolmogorov Theorem and Compactness of Vector-Valued Multilinear Operators [J].
Xue, Qingying ;
Yabuta, Kozo ;
Yan, Jingquan .
JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (10) :9891-9914
[29]   Weighted estimates for the iterated commutators of multilinear maximal and fractional type operators [J].
Xue, Qingying .
STUDIA MATHEMATICA, 2013, 217 (02) :97-122
[30]   Endpoint Properties of Localized Riesz Transforms and Fractional Integrals Associated to Schrodinger Operators [J].
Yang, Dachun ;
Yang, Dongyong ;
Zhou, Yuan .
POTENTIAL ANALYSIS, 2009, 30 (03) :271-300