On weighted compactness of commutators of square function and semi-group maximal function associated to Schrodinger operators

被引:1
作者
Wang, Shifen [1 ,2 ,3 ]
Xue, Qingying [4 ]
Zhang, Chunmei [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[4] Beijing Normal Univ, Sch Math Sci, Minist Educ, Lab Math & Complex Syst, Beijing 100875, Peoples R China
关键词
Schrodinger operator; Littlewood-Paley function; Semi-group maximal operator; Commutator; Compactness; INTEGRAL-OPERATORS; BILINEAR OPERATORS; HOMOGENEOUS TYPE; SPACES; BOUNDEDNESS;
D O I
10.1007/s13348-022-00381-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Delta be the laplacian operator on R-n and V be a nonnegative potential satisfying an appropriate reverse Holder inequality. The Littlewood-Paley square function g associated with the Schrodinger operator L = -Delta + V is defined by: g(f)(x) = (integral(infinity)(0) vertical bar d/dte(-tL)(f)(x)vertical bar(2)tdt)(1/2). In this paper, we show that the commutators of g are compact operators on L-p(w) for 1 < p < infinity if b is an element of CMO theta(rho ) and w is an element of A(p)(rho,theta) , where CMO theta(rho)(R-n) denotes the closure of C-c(infinity) (R-n) in the BMO theta(rho) topology and A(p)(rho,theta) is a weighted class which is more larger than Muckenhoupt A(p) weight class. An extra weight condition in a previous weighted compactness result is removed for the commutators of the semi-group maximal function defined by T*(f)(x) = sup(t>0) vertical bar e(-tL)f(x)vertical bar.
引用
收藏
页码:129 / 148
页数:20
相关论文
共 32 条
  • [1] [Anonymous], 1999, Math. Sci. Res. Hot-Line
  • [2] Compactness properties of commutators of bilinear fractional integrals
    Benyi, Arpad
    Damian, Wendolin
    Moen, Kabe
    Torres, Rodolfo H.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 280 (1-2) : 569 - 582
  • [3] Bényi A, 2013, P AM MATH SOC, V141, P3609
  • [4] Classes of weights related to Schrodinger operators
    Bongioanni, B.
    Harboure, E.
    Salinas, O.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) : 563 - 579
  • [5] Commutators of Riesz Transforms Related to Schrodinger Operators
    Bongioanni, B.
    Harboure, E.
    Salinas, O.
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) : 115 - 134
  • [6] COMPACTNESS FOR COMMUTATORS OF MARCINKIEWICZ INTEGRALS IN MORREY SPACES
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (02): : 633 - 658
  • [7] [陈艳萍 CHEN Yanping], 2009, [数学年刊. A辑, Chinese Annals of Mathematics, Ser. A], V30, P201
  • [8] COMPACTNESS CHARACTERIZATION OF COMMUTATORS FOR LITTLEWOOD-PALEY OPERATORS
    Chen, Yanping
    Ding, Yong
    [J]. KODAI MATHEMATICAL JOURNAL, 2009, 32 (02) : 256 - 323
  • [9] BMO spaces related to Schrodinger operators with potentials satisfying a reverse Holder inequality
    Dziubanski, J
    Garrigós, G
    Martínez, T
    Torrea, JL
    Zienkiewicz, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (02) : 329 - 356
  • [10] Dziubanski J, 1999, REV MAT IBEROAM, V15, P279