A note on the relative growth of products of multiple partial quotients in the plane
被引:1
作者:
Brown-Sarre, Adam
论文数: 0引用数: 0
h-index: 0
机构:
La Trobe Univ, Dept Math & Phys Sci, Bendigo, Vic 3552, AustraliaLa Trobe Univ, Dept Math & Phys Sci, Bendigo, Vic 3552, Australia
Brown-Sarre, Adam
[1
]
论文数: 引用数:
h-index:
机构:
Hussain, Mumtaz
[1
]
机构:
[1] La Trobe Univ, Dept Math & Phys Sci, Bendigo, Vic 3552, Australia
来源:
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES
|
2023年
/
66卷
/
02期
基金:
澳大利亚研究理事会;
关键词:
Metric continued fractions;
Hausdorff dimension;
uniform Diophantine approximation;
SETS;
DIMENSION;
D O I:
10.4153/S0008439522000510
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let r = [a(1)(r), a(2)(r), ...] be the continued fraction expansion of a real number r epsilon R. The growth properties of the products of consecutive partial quotients are tied up with the set admitting improvements to Dirichlet's theorem. Let (t(1), ..., t(m)) epsilon R-+(m), and let Psi : N -> (1, infinity) be a function such that Psi(n) -> infinity as n -> infinity. We calculate the Hausdorff dimension of the set of all (x, y) is an element of [0,1)(2) such that max{Pi(m)(i=1) a(n+i)(ti)(x), Pi(m)(i=1) a(n+i)(ti)(y)} >= Psi(n) is satisfied for all n >= 1.
机构:
Nanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China
La Trobe Univ, Dept Math & Stat, Bendigo 3552, AustraliaNanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China
Hu, Hui
Hussain, Mumtaz
论文数: 0引用数: 0
h-index: 0
机构:
La Trobe Univ, Dept Math & Stat, Bendigo 3552, AustraliaNanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China
Hussain, Mumtaz
Yu, Yueli
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R ChinaNanchang Hangkong Univ, Sch Math & Informat Sci, Nanchang 330063, Jiangxi, Peoples R China