Complete solutions on local antimagic chromatic number of three families of disconnected graphs

被引:0
作者
Chan, Tsz Lung [1 ]
Lau, Gee-Choon [2 ]
Shiu, Wai Chee [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Univ Teknol MARA, Coll Comp Informat & Math, Johor Branch, Segamat Campus, Shah Alam 85000, Malaysia
关键词
local antimagic labeling; local antimagic chromatic number; disconnected graphs;
D O I
10.22049/cco.2024.29032.1818
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An edge labeling of a graph G = (V, E) is said to be local antimagic if it is a bijection f : E -> {1,. ..,|E|} such that for any pair of adjacent vertices x and y, f+(x) =6 f+(y), where the induced vertex label f+(x) = E f (e), with e ranging over all the edges incident to x. The local antimagic chromatic number of G, denoted by chi la(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we study local antimagic labeling of disjoint unions of stars, paths and cycles whose components need not be identical. Consequently, we completely determined the local antimagic chromatic numbers of disjoint union of two stars, paths, and 2-regular graphs with at most one odd order component respectively.
引用
收藏
页码:973 / 988
页数:16
相关论文
共 10 条
[1]   Local Antimagic Vertex Coloring of a Graph [J].
Arumugam, S. ;
Premalatha, K. ;
Baa, Martin ;
Semanicova-Fenovcikova, Andrea .
GRAPHS AND COMBINATORICS, 2017, 33 (02) :275-285
[2]   Local Antimagic Chromatic Number for Copies of Graphs [J].
Baca, Martin ;
Semanicova-Fenovcikova, Andrea ;
Wang, Tao-Ming .
MATHEMATICS, 2021, 9 (11)
[3]  
Bensmail J, 2017, DISCRETE MATH THEOR, V19
[4]   Magic rectangles revisited [J].
Hagedorn, TR .
DISCRETE MATHEMATICS, 1999, 207 (1-3) :65-72
[5]  
Harmuth T., 1881, ARCH MATH PHYS, V66, P413
[6]  
Harmuth T., 1881, ARCH MATH PHYS, V66, P286
[7]  
Haslegrave J, 2018, DISCRETE MATH THEOR, V20
[8]   ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF CYCLE-RELATED JOIN GRAPHS [J].
Lau, Gee-Choon ;
Shiu, Wai-Chee ;
Ng, Ho-Kuen .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) :133-152
[9]   Affirmative Solutions on Local Antimagic Chromatic Number [J].
Lau, Gee-Choon ;
Ng, Ho-Kuen ;
Shiu, Wai-Chee .
GRAPHS AND COMBINATORICS, 2020, 36 (05) :1337-1354
[10]  
Marsidi M., 2019, J MAT MANTIK, V5, P69, DOI [10.15642/mantik.2019.5.2.69-75, DOI 10.15642/MANTIK.2019.5.2.69-75]