Label-free tumor cells classification using deep learning and high-content imaging

被引:11
作者
Piansaddhayanon, Chawan [1 ,2 ,3 ]
Koracharkornradt, Chonnuttida [2 ]
Laosaengpha, Napat [1 ,2 ]
Tao, Qingyi [4 ]
Ingrungruanglert, Praewphan [5 ]
Israsena, Nipan [5 ,6 ]
Chuangsuwanich, Ekapol [1 ,2 ]
Sriswasdi, Sira [2 ,7 ]
机构
[1] Chulalongkorn Univ, Dept Comp Engn, Fac Engn, Bangkok 10330, Thailand
[2] Chulalongkorn Univ, Ctr Excellence Computat Mol Biol, Fac Med, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Chula Intelligent & Complex Syst, Fac Sci, Bangkok 10330, Thailand
[4] NVIDIA AI Technol Ctr, Singapore, Singapore
[5] Chulalongkorn Univ, Ctr Excellence Stem Cell & Cell Therapy, Fac Med, Bangkok 10330, Thailand
[6] Chulalongkorn Univ, Dept Pharmacol, Fac Med, Bangkok 10330, Thailand
[7] Chulalongkorn Univ, Ctr Artificial Intelligence Med, Res Affairs, Fac Med, Bangkok 10330, Thailand
关键词
D O I
10.1038/s41597-023-02482-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many studies have shown that cellular morphology can be used to distinguish spiked-in tumor cells in blood sample background. However, most validation experiments included only homogeneous cell lines and inadequately captured the broad morphological heterogeneity of cancer cells. Furthermore, normal, non-blood cells could be erroneously classified as cancer because their morphology differ from blood cells. Here, we constructed a dataset of microscopic images of organoid-derived cancer and normal cell with diverse morphology and developed a proof-of-concept deep learning model that can distinguish cancer cells from normal cells within an unlabeled microscopy image. In total, more than 75,000 organoid-drived cells from 3 cholangiocarcinoma patients were collected. The model achieved an area under the receiver operating characteristics curve (AUROC) of 0.78 and can generalize to cell images from an unseen patient. These resources serve as a foundation for an automated, robust platform for circulating tumor cell detection.
引用
收藏
页数:13
相关论文
共 41 条
[1]   D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images [J].
Abdul, Lyan ;
Xu, Jocelyn ;
Sotra, Alexander ;
Chaudary, Abbas ;
Gao, Jerry ;
Rajasekar, Shravanthi ;
Anvari, Nicky ;
Mahyar, Hamidreza ;
Zhang, Boyang .
LAB ON A CHIP, 2022, 22 (21) :4118-4128
[2]   High-Throughput Automated Microscopy of Circulating Tumor Cells [J].
Aguilar-Avelar, Carlos ;
Soto-Garcia, Brenda ;
Araiz-Hernandez, Diana ;
Yee-de Leon, Juan F. ;
Esparza, Miguel ;
Chacon, Franco ;
Rolando Delgado-Balderas, Jesus ;
Alvarez, Mario M. ;
Trujillo-de Santiago, Grissel ;
Gomez-Guerra, Lauro S. ;
Velarde-Calvillo, Liza P. ;
Abarca-Blanco, Alejandro ;
Wong-Campos, J. D. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[3]   Cholangiocarcinoma Disease Modelling Through Patients Derived Organoids [J].
Amato, Francesco ;
Rae, Colin ;
Prete, Maria Giuseppina ;
Braconi, Chiara .
CELLS, 2020, 9 (04)
[4]   Technologies for circulating tumor cell separation from whole blood [J].
Banko, Petra ;
Lee, Sun Young ;
Nagygyorgy, Viola ;
Zrinyi, Miklos ;
Chae, Chang Hoon ;
Cho, Dong Hyu ;
Telekes, Andras .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2019, 12 (1)
[5]   The Organoid Cell Atlas [J].
Bock, Christoph ;
Boutros, Michael ;
Camp, J. Gray ;
Clarke, Laura ;
Clevers, Hans ;
Knoblich, Juergen A. ;
Liberali, Prisca ;
Regev, Aviv ;
Rios, Anne C. ;
Stegle, Oliver ;
Stunnenberg, Hendrik G. ;
Teichmann, Sarah A. ;
Treutlein, Barbara ;
Vries, Robert G. J. .
NATURE BIOTECHNOLOGY, 2021, 39 (01) :13-17
[6]   Automated brightfield morphometry of 3D organoid populations by OrganoSeg [J].
Borten, Michael A. ;
Bajikar, Sameer S. ;
Sasaki, Nobuo ;
Clevers, Hans ;
Janes, Kevin A. .
SCIENTIFIC REPORTS, 2018, 8
[7]   Deep learning to predict microscope images [J].
Brent, Roger ;
Boucheron, Laura .
NATURE METHODS, 2018, 15 (11) :867-870
[8]   Deep Learning in Label-free Cell Classification [J].
Chen, Claire Lifan ;
Mahjoubfar, Ata ;
Tai, Li-Chia ;
Blaby, Ian K. ;
Huang, Allen ;
Niazi, Kayvan Reza ;
Jalali, Bahram .
SCIENTIFIC REPORTS, 2016, 6
[9]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[10]   In Silico Labeling: Predicting Fluorescent Labels in Unlabeled Images [J].
Christiansen, Eric M. ;
Yang, Samuel J. ;
Ando, D. Michael ;
Javaherian, Ashkan ;
Skibinski, Gaia ;
Lipnick, Scott ;
Mount, Elliot ;
O'Neil, Alison ;
Shah, Kevan ;
Lee, Alicia K. ;
Goyal, Piyush ;
Fedus, William ;
Poplin, Ryan ;
Esteva, Andre ;
Berndl, Marc ;
Rubin, Lee L. ;
Nelson, Philip ;
Finkbeiner, Steven .
CELL, 2018, 173 (03) :792-+