FDSR: An Interpretable Frequency Division Stepwise Process Based Single-Image Super-Resolution Network

被引:1
|
作者
Xu, Pengcheng [1 ,2 ]
Liu, Qun [1 ,2 ]
Bao, Huanan [1 ,2 ]
Zhang, Ruhui [3 ]
Gu, Lihua [1 ,2 ]
Wang, Guoyin [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Key Lab Big Data Intelligent Comp, Chongqing 400065, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing 400065, Peoples R China
关键词
Image reconstruction; Frequency conversion; Visualization; Superresolution; Degradation; Band-pass filters; Reconstruction algorithms; Single-image super-resolution; interpretable CNNs; Fourier transform; frequency division; step-wise reconstruction;
D O I
10.1109/TIP.2024.3368960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning has excelled in single-image super-resolution (SISR) applications, yet the lack of interpretability in most deep learning-based SR networks hinders their applicability, especially in fields like medical imaging that require transparent computation. To address these problems, we present an interpretable frequency division SR network that operates in the image frequency domain. It comprises a frequency division module and a step-wise reconstruction method, which divides the image into different frequencies and performs reconstruction accordingly. We develop a frequency division loss function to ensure that each reconstruction module (ReM) operates solely at one image frequency. These methods establish an interpretable framework for SR networks, visualizing the image reconstruction process and reducing the black box nature of SR networks. Additionally, we revisited the subpixel layer upsampling process by deriving its inverse process and designing a displacement generation module. This interpretable upsampling process incorporates subpixel information and is similar to pre-upsampling frameworks. Furthermore, we develop a new ReM based on interpretable Hessian attention to enhance network performance. Extensive experiments demonstrate that our network, without the frequency division loss, outperforms state-of-the-art methods qualitatively and quantitatively. The inclusion of the frequency division loss enhances the network's interpretability and robustness, and only slightly decreases the PSNR and SSIM metrics by an average of 0.48 dB and 0.0049, respectively.
引用
收藏
页码:1710 / 1725
页数:16
相关论文
共 50 条
  • [21] A Practical Contrastive Learning Framework for Single-Image Super-Resolution
    Wu, Gang
    Jiang, Junjun
    Liu, Xianming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15834 - 15845
  • [22] Single-image super-resolution based on multi-branch residual pyramid network
    Jiayu Ou
    Hao Xia
    Wenxiao Huo
    Yejin Yan
    Tianping Li
    Journal of Real-Time Image Processing, 2021, 18 : 2569 - 2581
  • [23] A Single-Image Super-Resolution Method Based on Progressive-Iterative Approximation
    Zhang, Yunfeng
    Wang, Ping
    Bao, Fangxun
    Yao, Xunxiang
    Zhang, Caiming
    Lin, Hongwei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (06) : 1407 - 1422
  • [24] A Content Dependent Kernel For Single-Image Super-Resolution
    Saryazdi, Saman
    Saryazdi, Saeid
    Nezanabadipour, Hossein
    2013 5TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2013, : 453 - 456
  • [25] FAST SINGLE-IMAGE SUPER-RESOLUTION WITH FILTER SELECTION
    Salvador, Jordi
    Perez-Pellitero, Eduardo
    Kochale, Axel
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 640 - 644
  • [26] Collaborative Representation Cascade for Single-Image Super-Resolution
    Zhang, Yongbing
    Zhang, Yulun
    Zhang, Jian
    Xu, Dong
    Fu, Yun
    Wang, Yisen
    Ji, Xiangyang
    Dai, Qionghai
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (05): : 845 - 860
  • [27] LOCAL OPERATOR ESTIMATION FOR SINGLE-IMAGE SUPER-RESOLUTION
    Tang, Yi
    Chen, Hong
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2015, : 39 - 44
  • [28] FRESH-FRI-Based Single-Image Super-Resolution Algorithm
    Wei, Xiaoyao
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3723 - 3735
  • [29] The single-image super-resolution method based on the optimization of neural networks
    Duanmu, Chunjiang
    Lei, Yi
    SECOND TARGET RECOGNITION AND ARTIFICIAL INTELLIGENCE SUMMIT FORUM, 2020, 11427
  • [30] Lightweight hierarchical residual feature fusion network for single-image super-resolution
    Qin, Jiayi
    Liu, Feiqiang
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaomin
    NEUROCOMPUTING, 2022, 478 : 104 - 123