Phase engineering of Ni-Mn binary layered oxide cathodes for sodium-ion batteries

被引:22
作者
Hong, Feifei [1 ]
Zhou, Xin [2 ]
Liu, Xiaohong [1 ]
Feng, Guilin [3 ,4 ]
Zhang, Heng [5 ]
Fan, Weifeng [6 ]
Zhang, Bin [6 ]
Zuo, Meihua [6 ]
Xing, Wangyan [6 ]
Zhang, Ping [6 ]
Yan, Hua [7 ]
Xiang, Wei [1 ]
机构
[1] Chengdu Univ Technol, Coll Mat Chem & Chem Engn, Chengdu 610059, Sichuan, Peoples R China
[2] Sichuan Univ, Coll Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[3] Hokkaido Univ, Res Inst Elect Sci RIES, N20W10, Sapporo, Hokkaido 0010020, Japan
[4] Hokkaido Univ, Grad Sch Informat Sci & Technol, Div Informat Sci & Technol, N20W10, Sapporo, Hokkaido 0010020, Japan
[5] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215009, Jiangsu, Peoples R China
[6] Yibin Libode New Mat Co Ltd, Yibin 644200, Sichuan, Peoples R China
[7] Cent South Univ, Engn Res Ctr, Sch Met & Environm, Minist Educ Adv Battery Mat, Changsha 410083, Hunan, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2024年 / 91卷
基金
中国国家自然科学基金;
关键词
Phase engineering; Ni-Mn layered oxide; Cathode; Sodium-ion batteries; HIGH-PERFORMANCE;
D O I
10.1016/j.jechem.2024.01.025
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Nickel-manganese binary layered oxides with high working potential and low cost are potential candidates for sodium-ion batteries, but their electrochemical properties are highly related to compositional diversity. Diverse composite materials with various phase structures of P3, P2/P3, P2, P2/O3, and P2/ P3/O3 were synthesized by manipulating the sodium content and calcination conditions, leading to the construction of a synthetic phase diagram for NaxNi0.25Mn0.75O2 (0.45 <= x <= 1.1). Then, we compared the electrochemical characteristics and structural evolution during the desodiation/sodiation process of P2, P2/P3, P2/O3, and P2/P3/O3-NaxNi0.25Mn0.75O2. Among them, P2/P3-Na0.75Ni0.25Mn0.75O2 exhibits the best rate capability of 90.9 mA h g at 5 C, with an initial discharge capacity of 142.62 mA h g-1 at 0.1 C and a capacity retention rate of 78.25% after 100 cycles at 1 C in the voltage range of 2-4.3 V. The observed superior sodium storage performance of P2/P3 hybrids compared to other composite phases can be attributed to the enhanced Na' transfer dynamic, reduction of the Jahn-teller effect, and improved reaction reversibility induced by the synergistic effect of P2 and P3 phases. The systematic research and exploration of phases in NaxNi0.25Mn0.75O2 provide new sights into high-performance nickel-manganese binary layered oxide for sodium-ion batteries. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:501 / 511
页数:11
相关论文
共 50 条
[41]   Understanding the Air-Exposure Degradation Chemistry at a Nanoscale of Layered Oxide Cathodes for Sodium-Ion Batteries [J].
You, Ya ;
Dolocan, Andrei ;
Li, Wangda ;
Manthiram, Arumugam .
NANO LETTERS, 2019, 19 (01) :182-188
[42]   Construction of environmental-stable and high-rate layered oxide cathodes for sodium-ion batteries [J].
Cai, Zhenfei ;
Wang, Shuai ;
Tao, Mengqin ;
Li, Qi ;
Mei, Hailong ;
Ahsan, Zishan ;
Ma, Yangzhou ;
Yu, Zexin ;
Song, Guangsheng ;
Yang, Weidong ;
Wen, Cuie ;
Yi, Ting-Feng .
JOURNAL OF ENERGY STORAGE, 2023, 74
[43]   Tailoring Local Chemistry of O3-Type Ni/Fe/Mn-Based Layered Oxide Cathodes for High-Performance Sodium-Ion Batteries [J].
Zhang, Fang ;
Yang, Zhenzhong ;
He, Bijiao ;
Xin, Yan ;
Zhang, Jianwei ;
Liu, Wenbo ;
Cai, Shen ;
Tian, Huajun ;
Yang, Yang .
ACS NANO, 2025, 19 (25) :23011-23027
[44]   Expediting layered oxide cathodes based on electronic structure engineering for sodium-ion batteries: Reversible phase transformation, abnormal structural regulation, and stable anionic redox [J].
Zhang, Xin-Yu ;
Hu, Hai-Yan ;
Liu, Xin-Yu ;
Wang, Jingqiang ;
Liu, Yi-Feng ;
Zhu, Yan-Fang ;
Kong, Ling-Yi ;
Jian, Zhuang-Chun ;
Chou, Shu-Lei ;
Xiao, Yao .
NANO ENERGY, 2024, 128
[45]   Multiphase manganese-based layered oxide for sodium-ion batteries: structural change and phase transition [J].
Liu, Zhaomeng ;
Song, Yingying ;
Fu, Shizheng ;
An, Pengyan ;
Dong, Mohan ;
Wang, Shuran ;
Lai, Qingsong ;
Gao, Xuan-Wen ;
Luo, Wen-Bin .
MICROSTRUCTURES, 2024, 4 (03)
[46]   Promoting Layered Oxide Cathodes Based on Structural Reconstruction for Sodium-Ion Batteries: Reversible Phase Transition, Stable Interface Regulation, and Multifunctional Intergrowth Structure [J].
Liu, Xin-Yu ;
Li, Shi ;
Zhu, Yan-Fang ;
Zhang, Xin-Yu ;
Su, Yu ;
Li, Meng-Ying ;
Li, Hong-Wei ;
Chen, Bing-Bing ;
Liu, Yi-Feng ;
Xiao, Yao .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (04)
[47]   Manganese-based layered oxide cathodes for sodium ion batteries [J].
Liu, Huanqing ;
Deng, Wentao ;
Gao, Xu ;
Chen, Jun ;
Yin, Shouyi ;
Yang, Li ;
Zou, Guoqiang ;
Hou, Hongshuai ;
Ji, Xiaobo .
NANO SELECT, 2020, 1 (02) :200-225
[48]   Regulating electron distribution of P2-type layered oxide cathodes for practical sodium-ion batteries [J].
Liu, Zhengbo ;
Peng, Chao ;
Wu, Jun ;
Yang, Tingting ;
Zeng, Jun ;
Li, Fangkun ;
Kucernak, Anthony ;
Xue, Dongfeng ;
Liu, Qi ;
Zhu, Min ;
Liu, Jun .
MATERIALS TODAY, 2023, 68 :22-33
[49]   Na-deficient P2-type layered oxide cathodes for practical sodium-ion batteries [J].
Huang, Yu ;
Zeng, Weixiong ;
Li, Kui ;
Zhu, Xiaobo .
MICROSTRUCTURES, 2024, 4 (03)
[50]   Toward the High-Voltage Stability of Layered Oxide Cathodes for Sodium-Ion Batteries: Challenges, Progress, and Perspectives [J].
Chen, Zhigao ;
Deng, Yuyu ;
Kong, Ji ;
Fu, Weibin ;
Liu, Chenyang ;
Jin, Ting ;
Jiao, Lifang .
ADVANCED MATERIALS, 2024, 36 (26)