Identification of hydrogen bonding network for proton transfer at the quinol oxidation site of Rhodobacter capsulatus cytochrome bc1

被引:2
作者
Borek, Arkadiusz [1 ]
Wojcik-Augustyn, Anna [1 ]
Kuleta, Patryk [1 ]
Ekiert, Robert [1 ]
Osyczka, Artur [1 ]
机构
[1] Jagiellonian Univ, Dept Mol Biophys, Fac Biochem Biophys & Biotechnol, Krakow, Poland
关键词
IRON-SULFUR PROTEIN; BC(1) COMPLEX; ELECTRON-TRANSFER; CRYSTAL-STRUCTURE; DOMAIN MOVEMENT; Q-CYCLE; MITOCHONDRIAL; BINDING; Q(O); CHAIN;
D O I
10.1016/j.jbc.2023.105249
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cytochrome bc1 catalyzes electron transfer from quinol (QH2) to cytochrome c in reactions coupled to proton translocation across the energy-conserving membrane. Energetic efficiency of the catalytic cycle is secured by a two-electron and two-proton bifurcation reaction leading to oxidation of QH2 and reduction of the Rieske cluster and heme bL. The proton paths associated with this reaction remain elusive. Here, we used site-directed mutagenesis and quantum mechanical calculations to analyze the contribution of protonable side chains located at the heme bL side of the QH2 oxidation site in Rhodobacter capsulatus cytochrome bc1. We observe that the proton path is effectively switched off when H276 and E295 are simultaneously mutated to the nonprotonable residues in the H276F/E295V double mutant. The two single mutants, H276F or E295V, are less efficient but still transfer protons at functionally relevant rates. Natural selection exposed two single mutations, N279S and M154T, that restored the functional proton transfers in H276F/E295V. Quantum mechanical calculations indicated that H276F/E295V traps the side chain of Y147 in a position distant from QH2, whereas either N279S or M154T induce local changes releasing Y147 from that position. This shortens the distance between the protonable groups of Y147 and D278 and/or increases mobility of the Y147 side chain, which makes Y147 efficient in transferring protons from QH2 toward D278 in H276F/E295V. Overall, our study identified an extended hydrogen bonding network, build up by E295, H276, D278, and Y147, involved in efficient proton removal from QH2 at the heme bL side of QH2 oxidation site.
引用
收藏
页数:13
相关论文
共 35 条
[1]   SIZE OF THE AMINO-ACID SIDE-CHAIN AT POSITION-158 OF CYTOCHROME-B IS CRITICAL FOR AN ACTIVE CYTOCHROME-BC1 COMPLEX AND FOR PHOTOSYNTHETIC GROWTH OF RHODOBACTER-CAPSULATUS [J].
ATTAASAFOADJEI, E ;
DALDAL, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (02) :492-496
[2]   X-ray structure of Rhodobacter capsulatus cytochrome bc1:: comparison with its mitochondrial and chloroplast counterparts [J].
Berry, EA ;
Huang, LS ;
Saechao, LK ;
Pon, NG ;
Valkova-Valchanova, M ;
Daldal, F .
PHOTOSYNTHESIS RESEARCH, 2004, 81 (03) :251-275
[3]   Observations concerning the quinol oxidation site of the cytochrome bc1 complex [J].
Berry, EA ;
Huang, LS .
FEBS LETTERS, 2003, 555 (01) :13-20
[4]   Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide [J].
Borek, Arkadiusz ;
Kuleta, Patryk ;
Ekiert, Robert ;
Pietras, Rafal ;
Sarewicz, Marcin ;
Osyczka, Artur .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (39) :23781-23792
[5]   THE ROLE OF THE QUINONE POOL IN THE CYCLIC ELECTRON-TRANSFER CHAIN ON RHODOPSEUDOMONAS-SPHAEROIDES - A MODIFIED Q-CYCLE MECHANISM [J].
CROFTS, AR ;
MEINHARDT, SW ;
JONES, KR ;
SNOZZI, M .
BIOCHIMICA ET BIOPHYSICA ACTA, 1983, 723 (02) :202-218
[6]   Fusing two cytochromes b of Rhodobacter capsulatus cytochrome bc1 using various linkers defines a set of protein templates for asymmetric mutagenesis [J].
Czapla, Monika ;
Borek, Arkadiusz ;
Sarewicz, Marcin ;
Osyczka, Artur .
PROTEIN ENGINEERING DESIGN & SELECTION, 2012, 25 (01) :15-25
[7]   Uncovering the [2Fe2S] domain movement in cytochrome bc1 and its implications for energy conversion [J].
Darrouzet, E ;
Valkova-Valchanova, M ;
Moser, CC ;
Dutton, PL ;
Daldal, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (09) :4567-4572
[8]   Large scale domain movement in cytochrome bc1:: a new device for electron transfer in proteins [J].
Darrouzet, E ;
Moser, CC ;
Dutton, PL ;
Daldal, F .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (07) :445-451
[9]   POTENTIAL LIGANDS TO THE [2FE-2S] RIESKE CLUSTER OF THE CYTOCHROME-BC(1) COMPLEX OF RHODOBACTER-CAPSULATUS PROBED BY SITE-DIRECTED MUTAGENESIS [J].
DAVIDSON, E ;
OHNISHI, T ;
ATTAASAFOADJEI, E ;
DALDAL, F .
BIOCHEMISTRY, 1992, 31 (13) :3342-3351
[10]  
Frisch MJ., 2016, Gaussian 16 Rev. C.01