Adaptive Spectral Normalization for Generative Models

被引:1
作者
Egorov, E. A. [1 ]
Rogachev, A. I. [1 ]
机构
[1] HSE Univ, Moscow 101000, Russia
关键词
generative adversarial network; Wasserstein GAN; spectral normalization; high energy physics;
D O I
10.1134/S1064562423701089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When using Wasserstein GAN loss function for training generative adversarial networks (GAN), it is theoretically necessary to limit the discriminators' expressive power (so-called discriminator normalization). Such limitation increases the stability of GAN training at the expense of a less expressive final model. Spectral normalization is one of the normalization algorithms that involves applying a fixed operation independently to each discriminator layer. However, the optimal strength of the discriminator limitation varies for different tasks, which requires a parameterized normalization method. This paper proposes modifications to the spectral normalization algorithm that allow changing the strength of the discriminator limitation. In addition to parameterization, the proposed methods can change the degree of limitation during training, unlike the original algorithm. The quality of the obtained models is explored for each of the proposed methods.
引用
收藏
页码:S205 / S214
页数:10
相关论文
共 10 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
Arjovsky M, 2017, PR MACH LEARN RES, V70
[3]   Generative Models for Fast Calorimeter Simulation: the LHCb case [J].
Chekalina, Viktoria ;
Orlova, Elena ;
Ratnikov, Fedor ;
Ulyanov, Dmitry ;
Ustyuzhanin, Andrey ;
Zakharov, Egor .
23RD INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2018), 2019, 214
[4]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[5]   ABCAS: Adaptive Bound Control of spectral norm as Automatic Stabilizer [J].
Hirose, Shota ;
Maki, Shiori ;
Wada, Naoki ;
Katto, Jiro ;
Sun, Heming .
2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,
[6]  
Kostenetskiy P. S., 2021, Journal of Physics: Conference Series, V1740, DOI 10.1088/1742-6596/1740/1/012050
[7]  
Miyato Takeru, 2018, INT C LEARNING REPRE
[8]   GAN with an Auxiliary Regressor for the Fast Simulation of the Electromagnetic Calorimeter Response [J].
Rogachev, Alexander .
20TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2023, 2438
[9]  
Sajjadi MSM, 2018, ADV NEUR IN, V31
[10]  
Villani C., 2016, Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften