Fast 3D Semantic Segmentation Using a Self Attention Network and Random Sampling

被引:0
|
作者
Babu, Sandeep [1 ]
Jegarian, Majid [2 ]
Fischer, Dirk [1 ]
Mertschinbg, Baerbel [1 ]
机构
[1] Paderborn Univ, GET Lab, Dept Elect Engn & Informat Technol, Pohlweg 47-49, D-33098 Paderborn, Germany
[2] Karlsruhe Inst Technol KIT, IPEK Inst Product Engn, Kaiserstr 10, D-76131 Karlsruhe, Germany
来源
TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023 | 2023年 / 14136卷
关键词
Semantic segmentation; 3D Point cloud processing; Self attention;
D O I
10.1007/978-3-031-43360-3_21
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
For many use cases, reliable autonomous behavior of mobile robots can only be achieved if semantic information about the environment is available together with a topological map. However, current techniques either rely on costly sampling methods or involve computationally heavy pre- or post-processing steps, making them unsuitable for real-time systems with limited resources. In this paper, we propose an optimized approach for 3D point cloud processing that uses a self attention network combined with random sampling to directly infer the semantics of individual 3D points. The approach achieves competitive results on large scale point cloud data sets, including Semantic KITTI and S3DIS.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [41] Semantic Segmentation and 3D Reconstruction of Concrete Cracks
    Shokri, Parnia
    Shahbazi, Mozhdeh
    Nielsen, John
    REMOTE SENSING, 2022, 14 (22)
  • [42] Dynamic 3D Environment Perception Using Monocular Vision and Semantic Segmentation
    Danescu, Radu
    Itu, Razvan
    Borza, Diana
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 193 - 200
  • [43] 3d indoor point cloud semantic segmentation using image and voxel
    Yeom S.-S.
    Ha J.-E.
    Ha, Jong-Eun (jeha@seoultech.ac.kr), 1600, Institute of Control, Robotics and Systems (27): : 1000 - 1007
  • [44] 3D video semantic segmentation for wildfire smoke
    Guodong Zhu
    Zhenxue Chen
    Chengyun Liu
    Xuewen Rong
    Weikai He
    Machine Vision and Applications, 2020, 31
  • [45] 3D video semantic segmentation for wildfire smoke
    Zhu, Guodong
    Chen, Zhenxue
    Liu, Chengyun
    Rong, Xuewen
    He, Weikai
    MACHINE VISION AND APPLICATIONS, 2020, 31 (06)
  • [46] Real-Time Semantic Segmentation With Fast Attention
    Hu, Ping
    Perazzi, Federico
    Heilbron, Fabian Caba
    Wang, Oliver
    Lin, Zhe
    Saenko, Kate
    Sclaroff, Stan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (01) : 263 - 270
  • [47] TSNet: Three-Stream Self-Attention Network for RGB-D Indoor Semantic Segmentation
    Zhou, Wujie
    Yuan, Jianzhong
    Lei, Jingsheng
    Luo, Ting
    IEEE INTELLIGENT SYSTEMS, 2021, 36 (04) : 73 - 78
  • [48] DCANet: Differential convolution attention network for RGB-D semantic segmentation
    Bai, Lizhi
    Yang, Jun
    Tian, Chunqi
    Sun, Yaoru
    Mao, Maoyu
    Xu, Yanjun
    Xu, Weirong
    PATTERN RECOGNITION, 2025, 162
  • [49] Joint 2D and 3D Semantic Segmentation with Consistent Instance Semantic
    Wan, Yingcai
    Fang, Lijin
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2024, E107A (08) : 1309 - 1318
  • [50] SPARSE SPATIAL ATTENTION NETWORK FOR SEMANTIC SEGMENTATION
    Liu, Mengyu
    Yin, Hujun
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 644 - 648