Fast 3D Semantic Segmentation Using a Self Attention Network and Random Sampling

被引:0
|
作者
Babu, Sandeep [1 ]
Jegarian, Majid [2 ]
Fischer, Dirk [1 ]
Mertschinbg, Baerbel [1 ]
机构
[1] Paderborn Univ, GET Lab, Dept Elect Engn & Informat Technol, Pohlweg 47-49, D-33098 Paderborn, Germany
[2] Karlsruhe Inst Technol KIT, IPEK Inst Product Engn, Kaiserstr 10, D-76131 Karlsruhe, Germany
来源
TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023 | 2023年 / 14136卷
关键词
Semantic segmentation; 3D Point cloud processing; Self attention;
D O I
10.1007/978-3-031-43360-3_21
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
For many use cases, reliable autonomous behavior of mobile robots can only be achieved if semantic information about the environment is available together with a topological map. However, current techniques either rely on costly sampling methods or involve computationally heavy pre- or post-processing steps, making them unsuitable for real-time systems with limited resources. In this paper, we propose an optimized approach for 3D point cloud processing that uses a self attention network combined with random sampling to directly infer the semantics of individual 3D points. The approach achieves competitive results on large scale point cloud data sets, including Semantic KITTI and S3DIS.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [31] Active self-training for weakly supervised 3D scene semantic segmentation
    Gengxin Liu
    Oliver van Kaick
    Hui Huang
    Ruizhen Hu
    Computational Visual Media, 2024, 10 : 425 - 438
  • [32] Active self-training for weakly supervised 3D scene semantic segmentation
    Liu, Gengxin
    van Kaick, Oliver
    Huang, Hui
    Hu, Ruizhen
    COMPUTATIONAL VISUAL MEDIA, 2024, 10 (06) : 1063 - 1078
  • [33] RCANET: ROW-COLUMN ATTENTION NETWORK FOR SEMANTIC SEGMENTATION
    Lu, Bingxu
    Hu, Qinghua
    Wang, Yu
    Hu, Guosheng
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2604 - 2608
  • [34] 3D Modeling of the airport environment for fast and accurate LiDAR semantic segmentation of apron operations
    Brassel, Hannes
    Zouhar, Alexander
    Fricke, Hartmut
    2020 AIAA/IEEE 39TH DIGITAL AVIONICS SYSTEMS CONFERENCE (DASC) PROCEEDINGS, 2020,
  • [35] Efficient Attention Pyramid Network for Semantic Segmentation
    Yang, Qirui
    Ku, Tao
    Hu, Kunyuan
    IEEE ACCESS, 2021, 9 : 18867 - 18875
  • [36] Grouped Double Attention Network for Semantic Segmentation
    Chen Xiaolong
    Zhao Ji
    Chen Siyi
    Du Xinhao
    Liu Xin
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (22)
  • [37] POINT SET ATTENTION NETWORK FOR SEMANTIC SEGMENTATION
    Jiang, Jie
    Liu, Jing
    Fu, Jun
    Zhu, Xinxin
    Lu, Hanqing
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2186 - 2190
  • [38] FANet: Feature attention network for semantic segmentation
    Zhu, Lin
    Li, Linxi
    Tang, Mingwei
    Niu, Wenrui
    Xie, Jianhua
    Mao, Hongyun
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 138
  • [39] Semantic Segmentation Network Based on Integral Attention
    Xiong, Siqi
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 285 - 288
  • [40] HCFS3D: Hierarchical coupled feature selection network for 3D semantic and instance segmentation
    Tan, Jingang
    Wang, Kangru
    Chen, Lili
    Zhang, Guanghui
    Li, Jiamao
    Zhang, Xiaolin
    IMAGE AND VISION COMPUTING, 2021, 109