Fast 3D Semantic Segmentation Using a Self Attention Network and Random Sampling

被引:0
|
作者
Babu, Sandeep [1 ]
Jegarian, Majid [2 ]
Fischer, Dirk [1 ]
Mertschinbg, Baerbel [1 ]
机构
[1] Paderborn Univ, GET Lab, Dept Elect Engn & Informat Technol, Pohlweg 47-49, D-33098 Paderborn, Germany
[2] Karlsruhe Inst Technol KIT, IPEK Inst Product Engn, Kaiserstr 10, D-76131 Karlsruhe, Germany
来源
TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023 | 2023年 / 14136卷
关键词
Semantic segmentation; 3D Point cloud processing; Self attention;
D O I
10.1007/978-3-031-43360-3_21
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
For many use cases, reliable autonomous behavior of mobile robots can only be achieved if semantic information about the environment is available together with a topological map. However, current techniques either rely on costly sampling methods or involve computationally heavy pre- or post-processing steps, making them unsuitable for real-time systems with limited resources. In this paper, we propose an optimized approach for 3D point cloud processing that uses a self attention network combined with random sampling to directly infer the semantics of individual 3D points. The approach achieves competitive results on large scale point cloud data sets, including Semantic KITTI and S3DIS.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [21] Dynamic attention network for semantic segmentation
    Wu, Fei
    Chen, Feng
    Jing, Xiao-Yuan
    Hu, Chang-Hui
    Ge, Qi
    Ji, Yimu
    NEUROCOMPUTING, 2020, 384 (384) : 182 - 191
  • [22] FsaNet: Frequency Self-Attention for Semantic Segmentation
    Zhang, Fengyu
    Panahi, Ashkan
    Gao, Guangjun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4757 - 4772
  • [23] A Depth Image Fusion Network for 3D Point Cloud Semantic Segmentation
    Wang, Zhou
    Jia, Zixi
    Lyu, Ao
    Wang, Yating
    Sun, Changsheng
    Liu, Yongxin
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 849 - 853
  • [24] MHNet: Multiscale Hierarchical Network for 3D Point Cloud Semantic Segmentation
    Liang, Xiaoli
    Fu, Zhongliang
    IEEE ACCESS, 2019, 7 : 173999 - 174012
  • [25] Deep Projective 3D Semantic Segmentation
    Lawin, Felix Jaremo
    Danelljan, Martin
    Tosteberg, Patrik
    Bhat, Goutam
    Khan, Fahad Shahbaz
    Felsberg, Michael
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, 2017, 10424 : 95 - 107
  • [26] DGAT-net: Dynamic Graph Attention for 3D Point Cloud Semantic Segmentation
    Miao, Yujie
    Yi, Xiaodong
    Guan, Naiyang
    Lu, Hailun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XI, ICIC 2024, 2024, 14872 : 253 - 265
  • [27] SEMANTIC IMAGES SEGMENTATION FOR AUTONOMOUS DRIVING USING SELF-ATTENTION KNOWLEDGE DISTILLATION
    Karine, Ayoub
    Napoleon, Thibault
    Jridi, Maher
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 198 - 202
  • [28] Attention-enabled 3D boosted convolutional neural networks for semantic CT segmentation using deep supervision
    Kearney, Vasant
    Chan, Jason W.
    Wang, Tianqi
    Perry, Alan
    Yom, Sue S.
    Solberg, Timothy D.
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (13)
  • [29] EPNet with Self-Attention for Fast and Accurate 3D Object Detection
    Sakai, Yuto
    Nishikawa, Hiroki
    Kong, Xiangbo
    Tomiyama, Hiroyuki
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [30] SELF ATTENTION BASED SEMANTIC SEGMENTATION ON A NATURAL DISASTER DATASET
    Chowdhury, Tashnim
    Rahnemoonfar, Maryam
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2798 - 2802