Fast 3D Semantic Segmentation Using a Self Attention Network and Random Sampling

被引:0
|
作者
Babu, Sandeep [1 ]
Jegarian, Majid [2 ]
Fischer, Dirk [1 ]
Mertschinbg, Baerbel [1 ]
机构
[1] Paderborn Univ, GET Lab, Dept Elect Engn & Informat Technol, Pohlweg 47-49, D-33098 Paderborn, Germany
[2] Karlsruhe Inst Technol KIT, IPEK Inst Product Engn, Kaiserstr 10, D-76131 Karlsruhe, Germany
来源
TOWARDS AUTONOMOUS ROBOTIC SYSTEMS, TAROS 2023 | 2023年 / 14136卷
关键词
Semantic segmentation; 3D Point cloud processing; Self attention;
D O I
10.1007/978-3-031-43360-3_21
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
For many use cases, reliable autonomous behavior of mobile robots can only be achieved if semantic information about the environment is available together with a topological map. However, current techniques either rely on costly sampling methods or involve computationally heavy pre- or post-processing steps, making them unsuitable for real-time systems with limited resources. In this paper, we propose an optimized approach for 3D point cloud processing that uses a self attention network combined with random sampling to directly infer the semantics of individual 3D points. The approach achieves competitive results on large scale point cloud data sets, including Semantic KITTI and S3DIS.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 50 条
  • [1] Point attention network for semantic segmentation of 3D point clouds
    Feng, Mingtao
    Zhang, Liang
    Lin, Xuefei
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    PATTERN RECOGNITION, 2020, 107 (107)
  • [2] Attention-enhanced sampling point cloud network (ASPCNet) for efficient 3D tunnel semantic segmentation
    Zhou, Yunxiang
    Ji, Ankang
    Zhang, Limao
    Xue, Xiaolong
    AUTOMATION IN CONSTRUCTION, 2023, 146
  • [3] 3D Thyroid Segmentation in CT Using Self-attention Convolutional Neural Network
    He, Xiuxiu
    Guo, Bang Jun
    Lei, Yang
    Liu, Yingzi
    Wang, Tonghe
    Curran, Walter J.
    Zhang, Long Jiang
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314
  • [4] 1D Self-Attention Network for Point Cloud Semantic Segmentation Using Omnidirectional LiDAR
    Suzuki, Takahiro
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    Fujiyoshi, Hironobu
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 257 - 270
  • [5] Fast Semantic Segmentation of 3D Lidar Point Cloud Based on Random Forest Method
    Jiang, Songdi
    Guo, Wei
    Fan, Yuzhi
    Fu, Haiyang
    CHINA SATELLITE NAVIGATION CONFERENCE PROCEEDINGS, CSNC 2022, VOL II, 2022, 909 : 415 - 424
  • [6] Local Transformer Network on 3D Point Cloud Semantic Segmentation
    Wang, Zijun
    Wang, Yun
    An, Lifeng
    Liu, Jian
    Liu, Haiyang
    INFORMATION, 2022, 13 (04)
  • [7] An Efficient Sampling-Based Attention Network for Semantic Segmentation
    He, Xingjian
    Liu, Jing
    Wang, Weining
    Lu, Hanqing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2850 - 2863
  • [8] Semantic segmentation of 3D point cloud based on self-attention feature fusion group convolutional neural network
    Yang J.
    Li B.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2022, 30 (07): : 840 - 853
  • [9] Lightweight Self-Attention Network for Semantic Segmentation
    Zhou, Yan
    Zhou, Haibin
    Li, Nanjun
    Li, Jianxun
    Wang, Dongli
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [10] 3D CATBraTS: Channel Attention Transformer for Brain Tumour Semantic Segmentation
    El Badaoui, Rim
    Coll, Bonmati
    Psarrou, Aleka
    Villarini, Barbara
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 489 - 494