Machine Learning to Advance Human Genome-Wide Association Studies

被引:5
作者
Sigala, Rafaella E. [1 ]
Lagou, Vasiliki [1 ]
Shmeliov, Aleksey [1 ]
Atito, Sara [2 ,3 ]
Kouchaki, Samaneh [2 ,3 ]
Awais, Muhammad [2 ,3 ]
Prokopenko, Inga [1 ,2 ]
Mahdi, Adam [4 ]
Demirkan, Ayse [1 ,2 ]
机构
[1] Dept Clin & Expt Med, Sect Stat Multiom, Guildford GU2 7XH, Surrey, England
[2] Univ Surrey, Surrey Inst People Centred Artificial Intelligence, Guildford GU2 7XH, Surrey, England
[3] Univ Surrey, Ctr Vis Speech Signal Proc, Guildford GU2 7XH, Surrey, England
[4] Univ Oxford, Oxford Internet Inst, Oxford OX1 3JS, Oxon, England
关键词
genome-wide association; human genetics; machine learning; RISK PREDICTION; GENE; DISEASE; GWAS; PRIORITIZATION; SCHIZOPHRENIA; DISCOVERY; VARIANTS; OBESITY; FTO;
D O I
10.3390/genes15010034
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Machine learning, including deep learning, reinforcement learning, and generative artificial intelligence are revolutionising every area of our lives when data are made available. With the help of these methods, we can decipher information from larger datasets while addressing the complex nature of biological systems in a more efficient way. Although machine learning methods have been introduced to human genetic epidemiological research as early as 2004, those were never used to their full capacity. In this review, we outline some of the main applications of machine learning to assigning human genetic loci to health outcomes. We summarise widely used methods and discuss their advantages and challenges. We also identify several tools, such as Combi, GenNet, and GMSTool, specifically designed to integrate these methods for hypothesis-free analysis of genetic variation data. We elaborate on the additional value and limitations of these tools from a geneticist's perspective. Finally, we discuss the fast-moving field of foundation models and large multi-modal omics biobank initiatives.
引用
收藏
页数:18
相关论文
共 50 条
[31]   Genome-wide association studies establish that human intelligence is highly heritable and polygenic [J].
Davies, G. ;
Tenesa, A. ;
Payton, A. ;
Yang, J. ;
Harris, S. E. ;
Liewald, D. ;
Ke, X. ;
Le Hellard, S. ;
Christoforou, A. ;
Luciano, M. ;
McGhee, K. ;
Lopez, L. ;
Gow, A. J. ;
Corley, J. ;
Redmond, P. ;
Fox, H. C. ;
Haggarty, P. ;
Whalley, L. J. ;
McNeill, G. ;
Goddard, M. E. ;
Espeseth, T. ;
Lundervold, A. J. ;
Reinvang, I. ;
Pickles, A. ;
Steen, V. M. ;
Ollier, W. ;
Porteous, D. J. ;
Horan, M. ;
Starr, J. M. ;
Pendleton, N. ;
Visscher, P. M. ;
Deary, I. J. .
MOLECULAR PSYCHIATRY, 2011, 16 (10) :996-1005
[32]   Dissecting polygenic signals from genome-wide association studies on human behaviour [J].
Abdellaoui, Abdel ;
Verweij, Karin J. H. .
NATURE HUMAN BEHAVIOUR, 2021, 5 (06) :686-694
[33]   Genome-Wide Association Studies in Atherosclerosis [J].
Sivapalaratnam, S. ;
Motazacker, M. M. ;
Maiwald, S. ;
Hovingh, G. K. ;
Kastelein, J. J. P. ;
Levi, M. ;
Trip, M. D. ;
Dallinga-Thie, G. M. .
CURRENT ATHEROSCLEROSIS REPORTS, 2011, 13 (03) :225-232
[34]   Replication in Genome-Wide Association Studies [J].
Kraft, Peter ;
Zeggini, Eleftheria ;
Ioannidis, John P. A. .
STATISTICAL SCIENCE, 2009, 24 (04) :561-573
[35]   Genome-wide association studies: a primer [J].
Corvin, A. ;
Craddock, N. ;
Sullivan, P. F. .
PSYCHOLOGICAL MEDICINE, 2010, 40 (07) :1063-1077
[36]   Genome-Wide Association Studies in Atherosclerosis [J].
S. Sivapalaratnam ;
M. M. Motazacker ;
S. Maiwald ;
G. K. Hovingh ;
J. J. P. Kastelein ;
M. Levi ;
M. D. Trip ;
G. M. Dallinga-Thie .
Current Atherosclerosis Reports, 2011, 13 :225-232
[37]   Trio Genome-Wide Association Studies [J].
Badini, Isabella ;
Davies, Neil .
BEHAVIOR GENETICS, 2024, 54 (06) :548-549
[38]   Genome-wide association studies in mice [J].
Flint, Jonathan ;
Eskin, Eleazar .
NATURE REVIEWS GENETICS, 2012, 13 (11) :807-817
[39]   Successes of Genome-wide Association Studies [J].
Klein, Robert J. ;
Xu, Xing ;
Mukherjee, Semanti ;
Willis, Jason ;
Hayes, James .
CELL, 2010, 142 (03) :350-351
[40]   Systematic review of genome-wide association studies of anxiety disorders and neuroticism [J].
van der Walt, Kristien ;
Campbell, Megan ;
Stein, Dan J. ;
Dalvie, Shareefa .
WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY, 2023, 24 (04) :280-291