Spartus: A 9.4 TOp/s FPGA-Based LSTM Accelerator Exploiting Spatio-Temporal Sparsity

被引:23
作者
Gao, Chang [1 ,2 ]
Delbruck, Tobi [1 ,2 ]
Liu, Shih-Chii [1 ,2 ]
机构
[1] Univ Zurich, Inst Neuroinformat, Sensors Grp, CH-8057 Zurich, Switzerland
[2] Swiss Fed Inst Technol, CH-8057 Zurich, Switzerland
关键词
Delta network; dropout; edge computing; recurrent neural network (RNN); spiking neural network; structured pruning; NEURAL-NETWORK ACCELERATOR;
D O I
10.1109/TNNLS.2022.3180209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long short-term memory (LSTM) recurrent networks are frequently used for tasks involving time-sequential data, such as speech recognition. Unlike previous LSTM accelerators that either exploit spatial weight sparsity or temporal activation sparsity, this article proposes a new accelerator called "Spartus" that exploits spatio-temporal sparsity to achieve ultralow latency inference. Spatial sparsity is induced using a new column-balanced targeted dropout (CBTD) structured pruning method, producing structured sparse weight matrices for a balanced workload. The pruned networks running on Spartus hardware achieve weight sparsity levels of up to 96% and 94% with negligible accuracy loss on the TIMIT and the Librispeech datasets. To induce temporal sparsity in LSTM, we extend the previous DeltaGRU method to the DeltaLSTM method. Combining spatio-temporal sparsity with CBTD and DeltaLSTM saves on weight memory access and associated arithmetic operations. The Spartus architecture is scalable and supports real-time online speech recognition when implemented on small and large FPGAs. Spartus per-sample latency for a single DeltaLSTM layer of 1024 neurons averages 1 mu s . Exploiting spatio-temporal sparsity on our test LSTM network using the TIMIT dataset leads to 46x speedup of Spartus over its theoretical hardware performance to achieve 9.4-TOp/s effective batch-1 throughput and 1.1-TOp/s/W power efficiency.
引用
收藏
页码:1098 / 1112
页数:15
相关论文
共 44 条
[1]   NullHop: A Flexible Convolutional Neural Network Accelerator Based on Sparse Representations of Feature Maps [J].
Aimar, Alessandro ;
Mostafa, Hesham ;
Calabrese, Enrico ;
Rios-Navarro, Antonio ;
Tapiador-Morales, Ricardo ;
Lungu, Iulia-Alexandra ;
Milde, Moritz B. ;
Corradi, Federico ;
Linares-Barranco, Alejandro ;
Liu, Shih-Chii ;
Delbruck, Tobi .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (03) :644-656
[2]  
Amodei D, 2016, PR MACH LEARN RES, V48
[3]   Efficient and Effective Sparse LSTM on FPGA with Bank-Balanced Sparsity [J].
Cao, Shijie ;
Zhang, Chen ;
Yao, Zhuliang ;
Xiao, Wencong ;
Nie, Lanshun ;
Zhan, Dechen ;
Liu, Yunxin ;
Wu, Ming ;
Zhang, Lintao .
PROCEEDINGS OF THE 2019 ACM/SIGDA INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE GATE ARRAYS (FPGA'19), 2019, :63-72
[4]   An Efficient Accelerator for Multiple Convolutions From the Sparsity Perspective [J].
Chen, Qinyu ;
Huang, Yan ;
Sun, Rui ;
Song, Wenqing ;
Lu, Zhonghai ;
Fu, Yuxiang ;
Li, Li .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2020, 28 (06) :1540-1544
[5]   SPARSE-MATRIX TEST PROBLEMS [J].
DUFF, IS ;
GRIMES, RG ;
LEWIS, JG .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (01) :1-14
[6]  
Frankle J., 2019, INT C LEARN REPR
[7]   Maximum likelihood linear transformations for HMM-based speech recognition [J].
Gales, MJF .
COMPUTER SPEECH AND LANGUAGE, 1998, 12 (02) :75-98
[8]  
Gao C., 2019, P IEEE INT S CIRC SY, P1
[9]   EdgeDRNN: Recurrent Neural Network Accelerator for Edge Inference [J].
Gao, Chang ;
Rios-Navarro, Antonio ;
Chen, Xi ;
Liu, Shih-Chii ;
Delbruck, Tobi .
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2020, 10 (04) :419-432
[10]  
Gao C, 2020, IEEE INT CONF ROBOT, P5460, DOI [10.1109/icra40945.2020.9196984, 10.1109/ICRA40945.2020.9196984]