Numerical study of leakage characteristics of hydrogen-blended natural gas in buried pipelines

被引:27
|
作者
Wang, Lin [1 ,2 ]
Chen, Juan [1 ]
Ma, Tingxia [1 ,2 ]
Ma, Rulong [1 ]
Bao, Yangyang [1 ]
Fan, Zhaoya [3 ]
机构
[1] Southwest Petr Univ, Sch Mechatron Engn, Chengdu 610500, Peoples R China
[2] Sharing & Serv Platform Sichuan Prov, Oil & Gas Equipment Technol, Chengdu, Peoples R China
[3] Schlumberger China, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogen -blended natural gas; Pipeline leakage; Leakage flow characteristics; RELEASE RATE; SIMULATION; DIFFUSION; DISCHARGE; ENERGY; HOLES;
D O I
10.1016/j.ijhydene.2023.07.293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Pipeline transportation of hydrogen-blended natural gas is susceptible to leakage or rupture accidents caused by pipeline construction, corrosion, and hydrogen embrittlement, posing significant threats to the environment, human safety, and property. This paper improves the model of non-adiabatic pipeline leakage to study the flow characteristics of hydrogen-blended natural gas leakage, and its accuracy is validated using OLGA software and experiment data. The impact of the heat transfer coefficient, initial pressure and hydrogen blending ratio on the leakage flow characteristics is also analyzed. The findings indicate that the initial pressure in the pipe increases linearly at 0.5 MPa and the mass leakage velocity decreases linearly at a rate of nearly 9 kg/s; meanwhile, the temperature drop in the pipe and the overall leakage time increase. An increased hydrogen blending ratio corresponds to lower mass leakage velocity and shorter leakage time. The maximum dangerous distance of pure methane pipeline leakage is greater than that of a pure hydrogen pipeline. Furthermore, changes in the heat transfer coefficient predominantly affect the temperature inside the pipe. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1166 / 1179
页数:14
相关论文
共 50 条
  • [1] Study on the Leakage and Diffusion Characteristics of Buried Hydrogen-Blended Natural Gas Pipelines
    Liu, Wu
    Li, Liangdi
    Zhao, Donghui
    Liao, Yong
    JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [2] Numerical investigation on leakage and diffusion characteristics of buried hydrogen-blended natural gas pipelines
    Lu, Hancheng
    Guo, Baoling
    Chen, Xinhui
    Yao, Jingxin
    Liu, Baoqing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 : 1491 - 1506
  • [3] Simulation and analysis of leakage characteristics in hydrogen-blended natural gas pipelines
    Ouyang, Bowen
    Sun, Dongxu
    Yu, Yang
    Hu, Zhiyong
    Wu, Ming
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 99 : 888 - 897
  • [4] Numerical Research on Leakage Characteristics of Pure Hydrogen/Hydrogen-Blended Natural Gas in Medium- and Low-Pressure Buried Pipelines
    Li, Jiadong
    Xie, Bingchuan
    Gong, Liang
    ENERGIES, 2024, 17 (12)
  • [5] Study on Leakage Dispersion and Explosion of Hydrogen-Blended Natural Gas Pipelines
    Xu, Nuo
    Yang, Zhiyu
    Wei, Lixin
    Zhao, Fujun
    Gao, Yuhang
    COMPUTATIONAL AND EXPERIMENTAL SIMULATIONS IN ENGINEERING, ICCES 2024-VOL 2, 2025, 173 : 920 - 933
  • [6] Numerical investigation of the leakage and diffusion characteristics of hydrogen-blended natural gas in long-distance pipelines
    Wang, Luo
    Tian, Xiao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 90 : 950 - 960
  • [7] CFD analysis of leakage and diffusion characteristics in the buried hydrogen-blended natural gas pipeline
    Liu, Xing
    Wang, Yi
    Liang, Yuejiu
    Li, Jingfa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 60 : 354 - 368
  • [8] Leakage and diffusion behavior of a buried pipeline of hydrogen-blended natural gas
    Zhu, Jianlu
    Pan, Jun
    Zhang, Yixiang
    Li, Yuxing
    Li, He
    Feng, Hui
    Chen, Dongsheng
    Kou, Yimin
    Yang, Rui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (30) : 11592 - 11610
  • [9] Numerical investigation on the leakage and diffusion characteristics of hydrogen-blended natural gas in a domestic kitchen
    Su, Yue
    Li, Jingfa
    Yu, Bo
    Zhao, Yanlin
    RENEWABLE ENERGY, 2022, 189 : 899 - 916
  • [10] Study on multicomponent leakage and diffusion characteristics of hydrogen-blended natural gas in utility tunnels
    Wang, Ke
    Li, Changjun
    Jia, Wenlong
    Chen, Yong
    Wang, Jie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 740 - 760