Observations of Magnetospheric Solar Wind Charge Exchange

被引:2
|
作者
Ringuette, R. [1 ,2 ]
Kuntz, K. D. [2 ,3 ]
Koutroumpa, D. [4 ]
Kaaret, P. [5 ,6 ]
LaRocca, D. [5 ]
Richardson, J. [5 ,7 ]
机构
[1] ADNET Syst Inc, 6720 B Rockledge Dr,Suite 504, Bethesda, MD 20817 USA
[2] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[3] Johns Hopkins Univ, Henry A Rowland Dept Phys & Astron, Baltimore, MD 21218 USA
[4] Sorbonne Univ, LATMOS, IPSL, CNRS,UVSQ Paris Saclay, Guyancourt, France
[5] Univ Iowa, Dept Phys & Astron, Van Allen Hall, Iowa City, IA 52242 USA
[6] NASA Marshall Space Flight Ctr, Huntsville, AL 35812 USA
[7] US Geol Survey, Earth Resources & Observat Sci Ctr, 47914 252nd St, Sioux Falls, SD 57198 USA
关键词
X-RAY-EMISSION; HOT CIRCUMGALACTIC MEDIUM; CORONAL MASS EJECTION; COMPONENTS; DISCOVERY; HALOSAT; FLUX;
D O I
10.3847/1538-4357/acf3e2
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of solar wind charge exchange (SWCX) emission is vital to both the X-ray astrophysics and heliophysics communities. SWCX emission contaminates all astrophysical observations in X-rays regardless of the direction. Ignoring this contribution to X-ray spectra can lead to erroneous conclusions regarding the astrophysical plasmas along the line of sight owing to the similar spectral distributions of SWCX and several common types of more distant astrophysical plasmas. Since its discovery, the literature has distinguished between diffuse SWCX emission resulting from solar wind-neutral interactions within Earth's magnetosphere, called magnetospheric SWCX, and similar interactions occurring more generally throughout the heliosphere, called heliospheric SWCX. Here we build on previous work validating a modeling method for the heliospheric SWCX contribution in X-ray spectra obtained with a medium-resolution CubeSat instrument named HaloSat at low ecliptic latitudes. We now apply this model to a specially designed set of extended observations with the same instrument and successfully separate the spectral contributions of the astrophysical background and the heliospheric SWCX from the remaining contributions. Specifically, we find significant excess emission for four observations in the O vii emission line not explained by other sources, possibly indicative of magnetospheric SWCX. We discuss these results in comparison with simulation results publicly available through the Community Coordinated Modeling Center. We also report an absorbed high-temperature component in 2 of the 12 fields of view analyzed.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Three-dimensional exploration of the solar wind using observations of interplanetary scintillation
    Tokumaru, Munetoshi
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES B-PHYSICAL AND BIOLOGICAL SCIENCES, 2013, 89 (02): : 67 - 79
  • [42] Solar Wind Electron Strahls Associated with a High-Latitude CME: Ulysses Observations
    Lazar, M.
    Pomoell, J.
    Poedts, S.
    Dumitrache, C.
    Popescu, N. A.
    SOLAR PHYSICS, 2014, 289 (11) : 4239 - 4266
  • [43] Influence of the Solar Wind Dynamic Pressure on the Ion Precipitation: MAVEN Observations and Simulation Results
    Martinez, A.
    Modolo, R.
    Leblanc, F.
    Chaufray, J. Y.
    Witasse, O.
    Romanelli, N.
    Dong, Y.
    Hara, T.
    Halekas, J.
    Lillis, R.
    McFadden, J.
    Eparvier, F.
    Leclercq, L.
    Luhmann, J.
    Curry, S.
    Jakosky, B.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (10)
  • [44] On the Temporal Variability of the "Strahl" and Its Relationship with Solar Wind Characteristics: STEREO SWEA Observations
    Louarn, P.
    Dieval, C.
    Genot, V.
    Lavraud, B.
    Opitz, A.
    Fedorov, A.
    Sauvaud, J. A.
    Larson, D.
    Galvin, A.
    Acuna, M. H.
    Luhmann, J.
    SOLAR PHYSICS, 2009, 259 (1-2) : 311 - 321
  • [45] EVOLUTION OF THE RELATIONSHIPS BETWEEN HELIUM ABUNDANCE, MINOR ION CHARGE STATE, AND SOLAR WIND SPEED OVER THE SOLAR CYCLE
    Kasper, J. C.
    Stevens, M. L.
    Korreck, K. E.
    Maruca, B. A.
    Kiefer, K. K.
    Schwadron, N. A.
    Lepri, S. T.
    ASTROPHYSICAL JOURNAL, 2012, 745 (02)
  • [46] Suzaku and XMM-Newton observations of the North Polar Spur: Charge exchange or ISM absorption?
    Gu, Liyi
    Mao, Junjie
    Costantini, Elisa
    Kaastra, Jelle
    ASTRONOMY & ASTROPHYSICS, 2016, 594
  • [47] Helicity observations of active regions during the exchange period of Solar Cycle 24 and 25
    Liu, Jihong
    Liu, Yu
    Zhang, Yin
    Huang, Jin
    Zhang, HongQi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (04) : 5298 - 5304
  • [48] The distribution of solar wind speeds during solar minimum: Calibration for numerical solar wind modeling constraints on the source of the slow solar wind
    McGregor, S. L.
    Hughes, W. J.
    Arge, C. N.
    Owens, M. J.
    Odstrcil, D.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [49] Helios Observations of Quasiperiodic Density Structures in the Slow Solar Wind at 0.3, 0.4, and 0.6 AU
    Di Matteo, S.
    Viall, N. M.
    Kepko, L.
    Wallace, S.
    Arge, C. N.
    MacNeice, P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (02) : 837 - 860
  • [50] Solar Wind Composition at Solar Maximum
    Peter Bochsler
    Space Science Reviews, 2001, 97 : 113 - 121