A Relaxed Inertial Forward-Backward-Forward Algorithm for Solving Monotone Inclusions with Application to GANs
被引:0
|
作者:
Bot, Radu I.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Bot, Radu I.
[1
]
Sedlmayer, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Univ Vienna, Res Network Data Sci Uni Vienna, Kolingasse 14-16, A-1090 Vienna, AustriaUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Sedlmayer, Michael
[2
]
Vuong, Phan Tu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Math Sci, Southampton SO17 1BJ, EnglandUniv Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
Vuong, Phan Tu
[3
]
机构:
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Vienna, Res Network Data Sci Uni Vienna, Kolingasse 14-16, A-1090 Vienna, Austria
[3] Univ Southampton, Math Sci, Southampton SO17 1BJ, England
forward-backward-forward algorithm;
inertial effects;
relaxation parameters;
continuous time approach;
application to GANs;
DYNAMICAL-SYSTEMS;
SPLITTING METHOD;
CONVERGENCE;
D O I:
暂无
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
We introduce a relaxed inertial forward-backward-forward (RIFBF) splitting algorithm for approaching the set of zeros of the sum of a maximally monotone operator and a single valued monotone and Lipschitz continuous operator. This work aims to extend Tseng's forward-backward-forward method by both using inertial effects as well as relaxation parameters. We formulate first a second order dynamical system that approaches the solution set of the monotone inclusion problem to be solved and provide an asymptotic analysis for its trajectories. We provide for RIFBF, which follows by explicit time discretization, a convergence analysis in the general monotone case as well as when applied to the solving of pseudo-monotone variational inequalities. We illustrate the proposed method by applications to a bilinear saddle point problem, in the context of which we also emphasize the interplay between the inertial and the relaxation parameters, and to the training of Generative Adversarial Networks (GANs).
机构:
Southwest Univ, Sch Math & Stat, Chongqing, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing, Peoples R China
Tan, Bing
Qin, Xiaolong
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou Normal Univ, Dept Math, Hangzhou, Peoples R China
Nanjing Ctr Appl Math, Nanjing, Peoples R ChinaSouthwest Univ, Sch Math & Stat, Chongqing, Peoples R China
Qin, Xiaolong
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES,
2025,
机构:
Chiang Mai Univ, Fac Sci, Res Ctr Optimizat & Computat Intelligence Big Data, Dept Math, Chiang Mai 50200, ThailandChiang Mai Univ, Fac Sci, Res Ctr Optimizat & Computat Intelligence Big Data, Dept Math, Chiang Mai 50200, Thailand
Suantai, Suthep
Inkrong, Papatsara
论文数: 0引用数: 0
h-index: 0
机构:
Univ Phayao, Sch Sci, Phayao 56000, ThailandChiang Mai Univ, Fac Sci, Res Ctr Optimizat & Computat Intelligence Big Data, Dept Math, Chiang Mai 50200, Thailand
Inkrong, Papatsara
Cholamjiak, Prasit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Phayao, Sch Sci, Phayao 56000, ThailandChiang Mai Univ, Fac Sci, Res Ctr Optimizat & Computat Intelligence Big Data, Dept Math, Chiang Mai 50200, Thailand
机构:
Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, F-75005 Paris, FranceUniv Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, F-75005 Paris, France