Approximate message passing from random initialization with applications to Z2 synchronization

被引:4
作者
Li, Gen [1 ]
Fan, Wei [1 ]
Wei, Yuting [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA 19104 USA
关键词
approximate message passing; random initialization; nonasymptotic analysis|; spiked Wigner model; global convergence; LARGEST EIGENVALUE; PRINCIPAL-COMPONENTS; MATRIX COMPLETION; DEFORMATION; CONVERGENCE; GEOMETRY; BOUNDS;
D O I
10.1073/pnas.2302930120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is concerned with the problem of reconstructing an unknown rank-one matrix with prior structural information from noisy observations. While computing the Bayes optimal estimator is intractable in general due to the requirement of computing high-dimensional integrations/summations, Approximate Message Passing (AMP) emerges as an efficient first-order method to approximate the Bayes optimal estimator. However, the theoretical underpinnings of AMP remain largely unavailable when it starts from random initialization, a scheme of critical practical utility. Focusing on a prototypical model called Z(2) synchronization, we characterize the finite-sample dynamics of AMP from random initialization, uncovering its rapid global convergence. Our theory-which is nonasymptotic in nature-in this model unveils the non -necessity of a careful initialization for the success of AMP.
引用
收藏
页数:7
相关论文
共 67 条
  • [1] Abbe E, 2020, ANN STAT, V48, P1452, DOI [10.1214/19-AOS1854, 10.1214/19-aos1854]
  • [2] Matrix Completion Methods for Causal Panel Data Models
    Athey, Susan
    Bayati, Mohsen
    Doudchenko, Nikolay
    Imbens, Guido
    Khosravi, Khashayar
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2021, 116 (536) : 1716 - 1730
  • [3] Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices
    Baik, J
    Ben Arous, G
    Péché, S
    [J]. ANNALS OF PROBABILITY, 2005, 33 (05) : 1643 - 1697
  • [4] Approximate Message-Passing Decoder and Capacity Achieving Sparse Superposition Codes
    Barbier, Jean
    Krzakala, Florent
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 4894 - 4927
  • [5] The LASSO Risk for Gaussian Matrices
    Bayati, Mohsen
    Montanari, Andrea
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (04) : 1997 - 2017
  • [6] The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing
    Bayati, Mohsen
    Montanari, Andrea
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) : 764 - 785
  • [7] OPTIMAL DETECTION OF SPARSE PRINCIPAL COMPONENTS IN HIGH DIMENSION
    Berthet, Quentin
    Rigollet, Philippe
    [J]. ANNALS OF STATISTICS, 2013, 41 (04) : 1780 - 1815
  • [8] Algorithmic Analysis and Statistical Estimation of SLOPE via Approximate Message Passing
    Bu, Zhiqi
    Klusowski, Jason M.
    Rush, Cynthia
    Su, Weijie J.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) : 506 - 537
  • [9] Cademartori C, 2023, Arxiv, DOI arXiv:2302.00088
  • [10] RATE-OPTIMAL PERTURBATION BOUNDS FOR SINGULAR SUBSPACES WITH APPLICATIONS TO HIGH-DIMENSIONAL STATISTICS
    Cai, T. Tony
    Zhang, Anru
    [J]. ANNALS OF STATISTICS, 2018, 46 (01) : 60 - 89