Effect of Erbium Incorporation on SiNxOy/c-Si Interface in Silicon-Based Optoelectronic Devices

被引:5
|
作者
Yang, Lei [1 ,2 ]
Fan, Yuxuan [1 ,2 ]
Lv, Xiang [1 ,2 ]
Pang, Houwei [1 ,2 ]
Yuan, Shuai [1 ,2 ]
Yu, Xuegong [1 ,2 ]
Li, Dongsheng [1 ,2 ]
Yang, Deren [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep-level transient spectroscopy (DLTS); erbium (Er)-doped silicon oxynitride (SiNxOy); interface state; silicon-based optoelectronics; WAVE-GUIDES; STATES; FABRICATION; IRON; FILM; DLTS;
D O I
10.1109/TED.2023.3316147
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
During the fabrication process of erbium (Er) doped Si-based light-emitting devices (LEDs), it is well known that high-temperature annealing is necessary for the activation of Er3+ ions and its diffusion in the dielectric layer is inevitable in this process. However, whether Er3+ ions will contaminate the interface and deteriorate the device during postanneal remains unclear. This work sheds light on the detailed electrical properties of interface between silicon oxynitride (SiNxOy) and crystal silicon (c-Si) before and after Er doping. We found that the activated Er3+ ions will bring about higher positive fixed charge density, which may aggravate the bending of the energy band and form deeper depletion region for majority carriers near the surface of silicon. Furthermore, higher density of interface states and wider energy distribution have been found via deep-level transient spectroscopy (DLTS) method in the Er-doped samples. These results enable us to reasonably propose that the Er3+ impurities may interact with the intrinsic defects at the SiNxOy/c-Si interface. Such a viewpoint is well supported by the energy dispersive X-Ray spectroscopy (EDX) analysis of Er in the fabricated SiNxOy:Er film. The obtained results show us a clear microscopic picture of Er contamination influencing the SiNxOy/c-Si interface.
引用
收藏
页码:5757 / 5761
页数:5
相关论文
共 7 条
  • [1] Silicon-based optoelectronic luminescent materials and devices
    Cao J.
    Li D.
    Pi X.
    Ma X.
    Yang D.
    Li, Dongsheng (mselds@zju.edu.cn), 1600, Chinese Academy of Sciences (47): : 1001 - 1016
  • [2] Influence of etching parameters on optoelectronic properties of c-Si/porous silicon heterojunction - application to solar cells
    Bechiri, Fatiha
    Zerdali, Mokhtar
    Rahmoun, Ilham
    Hamzaoui, Saad
    Adnane, Mohamed
    Sahraoui, Taoufik
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2013, 61 (03) : 30102 - p1
  • [3] Comprehensive model for interface recombination at a-Si:H/c-Si interfaces based on amphoteric defects
    Steingrube, S.
    Steingrube, D. S.
    Brendel, R.
    Altermatt, P. P.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 2, 2010, 7 (02): : 276 - 279
  • [4] Effect of interface roughness and polarisation on the optical losses of porous silicon-based waveguides
    Charrier, J.
    Dumeige, Y.
    Pirasteh, P.
    Gadonna, M.
    MICRO & NANO LETTERS, 2012, 7 (03): : 275 - 278
  • [5] Effect of substrate temperature on the plasma texturing process of c-Si wafers for black silicon solar cells
    Murias, D.
    Moreno, M.
    Reyes-Betanzo, C.
    Torres, A.
    Rosales, P.
    Martinez, J.
    Ambrosio, R.
    Roca i Cabarrocas, P.
    Carlos, N.
    Itzmoyotl, A.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2016, 213 (07): : 1937 - 1941
  • [6] Constructing a Stable Si-N-Enriched Interface Boosts Lithium Storage Kinetics in a Silicon-Based Anode
    Yang, Zhen
    Jiang, Minxia
    Wang, Xin
    Wang, Yingxinjie
    Cao, Minhua
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (44) : 52636 - 52646
  • [7] Electroluminescence from Silicon-Based Light-Emitting Devices with Erbium-Doped Ta2O5 Films
    Xia, Chengtao
    Wang, Ziwei
    Jiang, Shuming
    Ji, Ran
    Lu, Linlin
    Yang, Deren
    Ma, Xiangyang
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (08):