Classification of p-groups via their 2-nilpotent multipliers

被引:0
作者
Niroomand, Peymam [1 ]
Parvizi, Mohsen [2 ]
机构
[1] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
[2] Ferdowsi Univ Mashhad, Dept Pure Math, Mashhad, Iran
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2023年 / 150卷
关键词
Nilpotent multiplier; Schur multiplier; non-abelian p-groups; 2-capable groups; capable groups; extra-special groups; SCHUR MULTIPLIERS; FINITE; ORDER;
D O I
10.4171/RSMUP/121
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a p-group of order pn, it is known that the order of 2-nilpotent multiplier is equal to IM.2/(G)I = p 12n.n-1/.n-2/C3-s2.G/, for an integer s2(G). In this article, we characterize all non-abelian p-groups satisfying s2(G) E {1; 2; 3}.
引用
收藏
页码:127 / 136
页数:10
相关论文
共 16 条
[1]   ON THE ORDER OF THE COMMUTATOR SUBGROUP AND THE SCHUR MULTIPLIER OF A FINITE P-GROUP [J].
BERKOVICH, YG .
JOURNAL OF ALGEBRA, 1991, 144 (02) :269-272
[2]   VANKAMPEN THEOREMS FOR DIAGRAMS OF SPACES [J].
BROWN, R ;
LODAY, JL .
TOPOLOGY, 1987, 26 (03) :311-335
[3]   SOME COMPUTATIONS OF NON-ABELIAN TENSOR-PRODUCTS OF GROUPS [J].
BROWN, R ;
JOHNSON, DL ;
ROBERTSON, EF .
JOURNAL OF ALGEBRA, 1987, 111 (01) :177-202
[4]   On the nilpotent multipliers of a group [J].
Burns, J ;
Ellis, G .
MATHEMATISCHE ZEITSCHRIFT, 1997, 226 (03) :405-428
[5]   Inequalities for Baer invariants of finite groups [J].
Burns, J ;
Graham, E .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (04) :385-391
[6]  
Hall M., 1964, GROUPS ORDER 2N N 6
[7]  
LUE AST, 1976, J LOND MATH SOC, V14, P309
[8]  
MOGHADDAM M. R. R., 1981, Bull. Iranian Math. Soc., V9, P5
[9]  
MOGHADDAM MRR, 1980, ARCH MATH, V33, P504
[10]  
Niroomand P, 2018, MATH REP, V20, P279