Sparse Approximate Multifrontal Factorization with Composite Compression Methods

被引:1
|
作者
Claus, Lisa [1 ]
Ghysels, Pieter [2 ]
Liu, Yang [2 ]
Nhan, Thai Anh [3 ]
Thirumalaisamy, Ramakrishnan [4 ]
Bhalla, Amneet Pal Singh [4 ]
Li, Sherry [2 ]
机构
[1] Natl Energy Res Sci Comp Ctr, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Appl Math & Computat Res Div, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[3] Santa Clara Univ, Dept Math & Comp Sci, 500 El Camino Real, Santa Clara, CA 95053 USA
[4] San Diego State Univ, Dept Mech Engn, 5500 Campanile Dr, San Diego, CA 92182 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2023年 / 49卷 / 03期
关键词
Sparse direct solver; multifrontal method; butterfly algorithm; block low-rank compression; PARALLEL DIRECT SOLVER; PERFORMANCE; SCATTERING; MATRICES; DESIGN;
D O I
10.1145/3611662
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article presents a fast and approximate multifrontal solver for large sparse linear systems. In a recent work by Liu et al., we showed the efficiency of a multifrontal solver leveraging the butterfly algorithm and its hierarchical matrix extension, HODBF (hierarchical off-diagonal butterfly) compression to compress large frontal matrices. The resulting multifrontal solver can attain quasi-linear computation and memory complexity when applied to sparse linear systems arising from spatial discretization of high-frequencywave equations. To further reduce the overall number of operations and especially the factorization memory usage to scale to larger problem sizes, in this article we develop a composite multifrontal solver that employs the HODBF format for large-sized fronts, a reduced-memory version of the nonhierarchical block low-rank format for medium-sized fronts, and a lossy compression format for small-sized fronts. This allows us to solve sparse linear systems of dimension up to 2.7x larger than before and leads to a memory consumption that is reduced by 70% while ensuring the same execution time. The code is made publicly available in GitHub.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Image Compression using Approximate Addition
    Nayar, Raunaq
    Balasubramanian, Padmanabhan
    Maskell, Douglas Leslie
    2021 IEEE REGION 10 CONFERENCE (TENCON 2021), 2021, : 260 - 265
  • [42] Parallel sparse orthogonal factorization on distributed-memory multiprocessors
    Sun, CG
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (03): : 666 - 685
  • [43] Efficient Matrix Multiplication: The Sparse Power-of-2 Factorization
    Mueller, Ralf R.
    Gaede, Bernhard
    Bereyhi, Ali
    2020 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2020,
  • [44] PARALLEL SPARSE QR FACTORIZATION ON SHARED-MEMORY ARCHITECTURES
    MATSTOMS, P
    PARALLEL COMPUTING, 1995, 21 (03) : 473 - 486
  • [45] FSAIPACK: A Software Package for High-Performance Factored Sparse Approximate Inverse Preconditioning
    Janna, Carlo
    Ferronato, Massimiliano
    Sartoretto, Flavio
    Gambolati, Giuseppe
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2015, 41 (02):
  • [46] AN OPTIMIZED SPARSE APPROXIMATE MATRIX MULTIPLY FOR MATRICES WITH DECAY
    Bock, Nicolas
    Challacombe, Matt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : C72 - C98
  • [47] THE USE OF SUPERNODES IN FACTORED SPARSE APPROXIMATE INVERSE PRECONDITIONING
    Janna, Carlo
    Ferronato, Massimiliano
    Gambolati, Giuseppe
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : C72 - C94
  • [48] Stability analysis of matrix Wiener-Hopf factorization of Daniele-Khrapkov class and reliable approximate factorization
    Kisil, Anastasia V.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2178):
  • [49] Digital Image Compression Using Approximate Addition
    Balasubramanian, Padmanabhan
    Nayar, Raunaq
    Maskell, Douglas L.
    ELECTRONICS, 2022, 11 (09)
  • [50] An out-of-core sparse symmetric-indefinite factorization method
    Meshar, Omer
    Irony, Dror
    Toledo, Sivan
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (03): : 445 - 471