High-Sensitivity Quantum-Enhanced Interferometers

被引:0
作者
Yu, Juan [1 ]
Wu, Yinhua [1 ]
Nie, Liang [1 ]
Zuo, Xiaojie [2 ]
机构
[1] Xian Technol Univ, Sch Optoelect Engn, Xian 710021, Peoples R China
[2] Dongguan Univ Technol, Sch Elect & Intelligentizat, Dongguan 523808, Peoples R China
基金
中国国家自然科学基金;
关键词
quantum metrology; interferometer; optical parametric amplifier; shot noise limit; PRECISION-MEASUREMENT; NOISE; LIGHT; LIMIT;
D O I
10.3390/photonics10070749
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-sensitivity interferometers are one of the basic tools for precision measurement, and their sensitivity is limited by their shot noise limit (SNL), which is determined by vacuum fluctuations of the probe field. The quantum interferometer with novel structures can break the SNL and measure the weak signals, such as the direct observation of gravity wave signal. Combining classical interferometers and the optical parametric amplifier (OPA) can enhance the signal; meanwhile, the quantum noise is kept at the vacuum level, so that the sensitivity of the nonlinear interferometer beyond the SNL can be achieved. By analyzing in detail the influence of system parameters on the precision of quantum metrology, including the intensity of optical fields for phase sensing, the gain factor of OPA, and the losses inside and outside the interferometers, the application conditions of high-sensitivity nonlinear quantum interferometers are obtained. Quantum interferometer-based OPAs provide the direct references for the practical development of quantum precise measurement.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Quantum-enhanced interferometry with asymmetric beam splitters
    Zhong, Wei
    Wang, Fan
    Zhou, Lan
    Xu, Peng
    Sheng, YuBo
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2020, 63 (06)
  • [22] Quantum-Enhanced Optical-Phase Tracking
    Yonezawa, Hidehiro
    Nakane, Daisuke
    Wheatley, Trevor A.
    Iwasawa, Kohjiro
    Takeda, Shuntaro
    Arao, Hajime
    Ohki, Kentaro
    Tsumura, Koji
    Berry, Dominic W.
    Ralph, Timothy C.
    Wiseman, Howard M.
    Huntington, Elanor H.
    Furusawa, Akira
    SCIENCE, 2012, 337 (6101) : 1514 - 1517
  • [23] Quantum-enhanced accelerometry with a nonlinear electromechanical circuit
    Jacobs, Kurt
    Balu, Radhakrishnan
    Teufel, John D.
    PHYSICAL REVIEW A, 2017, 96 (02)
  • [24] Sequential quantum-enhanced measurement with an atomic ensemble
    Lebedev, A. V.
    Treutlein, P.
    Blatter, G.
    PHYSICAL REVIEW A, 2014, 89 (01)
  • [25] High-Precision Quantum-Enhanced Gravimetry with a Bose-Einstein Condensate
    Szigeti, Stuart S.
    Nolan, Samuel P.
    Close, John D.
    Haine, Simon A.
    PHYSICAL REVIEW LETTERS, 2020, 125 (10)
  • [26] Quantum-enhanced interferometry with asymmetric beam splitters
    Wei Zhong
    Fan Wang
    Lan Zhou
    Peng Xu
    YuBo Sheng
    ScienceChina(Physics,Mechanics&Astronomy), 2020, (06) : 26 - 36
  • [27] Quantum-enhanced interferometry with asymmetric beam splitters
    Wei Zhong
    Fan Wang
    Lan Zhou
    Peng Xu
    YuBo Sheng
    Science China Physics, Mechanics & Astronomy, 2020, 63
  • [28] Demonstration of a quantum-enhanced fiber Sagnac interferometer
    Mehmet, Moritz
    Eberle, Tobias
    Steinlechner, Sebastian
    Vahlbruch, Henning
    Schnabel, Roman
    OPTICS LETTERS, 2010, 35 (10) : 1665 - 1667
  • [29] Quantum-enhanced imaging for characterizing anisotropic material
    Xie, Meng-Yu
    Niu, Su-Jian
    Han, Zhao-Qi-Zhi
    Li, Yin-Hai
    Chen, Ren-Hui
    Wang, Xiao-Hua
    Gao, Ming-Yuan
    Chen, Li
    Song, Yue-Wei
    Zhou, Zhi-Yuan
    Shi, Bao-Sen
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [30] Twin beam quantum-enhanced correlated interferometry for testing fundamental physics
    Pradyumna, S. T.
    Losero, E.
    Ruo-Berchera, I.
    Traina, P.
    Zucco, M.
    Jacobsen, C. S.
    Andersen, U. L.
    Degiovanni, I. P.
    Genovese, M.
    Gehring, T.
    COMMUNICATIONS PHYSICS, 2020, 3 (01)