De novo design of protein structure and function with RFdiffusion

被引:414
|
作者
Watson, Joseph L. [1 ,2 ]
Juergens, David [1 ,2 ,3 ]
Bennett, Nathaniel R. [1 ,2 ,3 ]
Trippe, Brian L. [2 ,4 ,5 ]
Yim, Jason [2 ,6 ]
Eisenach, Helen E. [1 ,2 ]
Ahern, Woody [1 ,2 ,7 ]
Borst, Andrew J. [1 ,2 ]
Ragotte, Robert J. [1 ,2 ]
Milles, Lukas F. [1 ,2 ]
Wicky, Basile I. M. [1 ,2 ]
Hanikel, Nikita [1 ,2 ]
Pellock, Samuel J. [1 ,2 ]
Courbet, Alexis [1 ,2 ,8 ]
Sheffler, William [1 ,2 ]
Wang, Jue [1 ,2 ]
Venkatesh, Preetham [1 ,2 ,9 ]
Sappington, Isaac [1 ,2 ,9 ]
Torres, Susana Vazquez [1 ,2 ,9 ]
Lauko, Anna [1 ,2 ,9 ]
De Bortoli, Valentin [8 ]
Mathieu, Emile [10 ]
Ovchinnikov, Sergey [11 ,12 ]
Barzilay, Regina [6 ]
Jaakkola, Tommi S. [6 ]
Dimaio, Frank [1 ,2 ]
Baek, Minkyung [13 ]
Baker, David [1 ,2 ,14 ]
机构
[1] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[2] Univ Washington, Inst Prot Design, Seattle, WA 98195 USA
[3] Univ Washington, Grad Program Mol Engn, Seattle, WA USA
[4] Columbia Univ, Dept Stat, New York, NY USA
[5] Columbia Univ, Irving Inst Canc Dynam, New York, NY USA
[6] MIT, Cambridge, MA USA
[7] Univ Washington, Paul G Allen Sch Comp Sci Engn, Seattle, WA USA
[8] Ecole Normale Super, Natl Ctr Sci Res, Rue Ulm, Paris, France
[9] Univ Washington, Grad Program Biol Phys Struct & Design, Seattle, WA USA
[10] Univ Cambridge, Dept Engn, Cambridge, England
[11] Harvard Univ, Fac Appl Sci, Cambridge, MA USA
[12] Harvard Univ, John Harvard Distinguished Sci Fellowship, Cambridge, MA USA
[13] Seoul Natl Univ, Sch Biol Sci, Seoul, South Korea
[14] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
基金
英国工程与自然科学研究理事会;
关键词
NEUTRALIZING ANTIBODY-RESPONSES; COMPUTATIONAL DESIGN; POTENT; PREDICTION; EVOLUTION; SYMMETRY; FOLD;
D O I
10.1038/s41586-023-06415-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications. Fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks yields a generative model for protein design that achieves outstanding performance on a wide range of protein structure and function design challenges.
引用
收藏
页码:1089 / 1100
页数:38
相关论文
共 50 条
  • [21] De novo protein design by citizen scientists
    Koepnick, Brian
    Flatten, Jeff
    Husain, Tamir
    Ford, Alex
    Silva, Daniel-Adriano
    Bick, Matthew J.
    Bauer, Aaron
    Liu, Gaohua
    Ishida, Yojiro
    Boykov, Alexander
    Estep, Roger D.
    Kleinfelter, Susan
    Norgard-Solano, Toke
    Wei, Linda
    Players, Foldit
    Montelione, Gaetano T.
    DiMaio, Frank
    Popovic, Zoran
    Khatib, Firas
    Cooper, Seth
    Baker, David
    NATURE, 2019, 570 (7761) : 390 - +
  • [22] De Novo Protein Structures and Assemblies by Design
    Woolfson, Dek
    PROTEIN SCIENCE, 2014, 23 : 66 - 66
  • [23] The coming of age of de novo protein design
    Po-Ssu Huang
    Scott E. Boyken
    David Baker
    Nature, 2016, 537 : 320 - 327
  • [24] De novo protein design by citizen scientists
    Brian Koepnick
    Jeff Flatten
    Tamir Husain
    Alex Ford
    Daniel-Adriano Silva
    Matthew J. Bick
    Aaron Bauer
    Gaohua Liu
    Yojiro Ishida
    Alexander Boykov
    Roger D. Estep
    Susan Kleinfelter
    Toke Nørgård-Solano
    Linda Wei
    Foldit Players
    Gaetano T. Montelione
    Frank DiMaio
    Zoran Popović
    Firas Khatib
    Seth Cooper
    David Baker
    Nature, 2019, 570 : 390 - 394
  • [25] De novo protein design with a language model
    Eleni Kotsiliti
    Nature Biotechnology, 2022, 40 : 1433 - 1433
  • [26] De novo design of bioactive protein switches
    Langan, Robert A.
    Boyken, Scott E.
    Ng, Andrew H.
    Samson, Jennifer A.
    Dods, Galen
    Westbrook, Alexandra M.
    Nguyen, Taylor H.
    Lajoie, Marc J.
    Chen, Zibo
    Berger, Stephanie
    Mulligan, Vikram Khipple
    Dueber, John E.
    Novak, Walter R. P.
    El-Samad, Hana
    Baker, David
    NATURE, 2019, 572 (7768) : 205 - +
  • [27] Recent Progress Using De Novo Design to Study Protein Structure, Design and Binding Interactions
    Ferrando, Juan
    Solomon, Lee A.
    LIFE-BASEL, 2021, 11 (03): : 1 - 23
  • [28] De novo design of "blue copper protein"
    Shiga, Daigo
    Nakane, Daisuke
    Inomata, Tomohiko
    Funahashi, Yasuhiro
    Masuda, Hideki
    Tanaka, Toshiki
    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, 2008, 128 : 76 - 76
  • [29] Template assisted protein de novo design
    Tuchscherer, G
    Mutter, M
    PURE AND APPLIED CHEMISTRY, 1996, 68 (11) : 2153 - 2162
  • [30] The coming of age of de novo protein design
    Huang, Po-Ssu
    Boyken, Scott E.
    Baker, David
    NATURE, 2016, 537 (7620) : 320 - 327