Outstanding Compatibility of Hard-Carbon Anodes for Sodium-Ion Batteries in Ionic Liquid Electrolytes

被引:4
|
作者
Maresca, Giovanna [1 ,2 ]
Petrongari, Angelica [3 ]
Brutti, Sergio [3 ]
Battista Appetecchi, Giovanni [1 ]
机构
[1] ENEA, Mat & Physicochem Proc Tech Unit, SSPT, PROMAS,MATPRO, Via Anguillarese 301, I-00123 Rome, Italy
[2] Univ Roma La Sapienza, Dept Basic & Appl Sci Engn, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dept Chem, Piazzale Aldo Moro 5, I-00185 Rome, Italy
基金
欧盟地平线“2020”;
关键词
sodium-ion batteries; ionic liquids; hard carbon; electrolytes; compatibility; INTERPHASE SEI; HIGH-CAPACITY; LITHIUM; PERFORMANCE; INSERTION;
D O I
10.1002/cssc.202300840
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbons (HC) from natural biowaste have been investigated as anodes for sodium-ion batteries in electrolytes based on 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMI][FSI]) and N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide ([N1114][FSI]) ionic liquids. The Na+ intercalation process has been analyzed by cyclic voltammetry tests, performed at different scan rates for hundreds of cycles, in combination with impedance spectroscopy measurements to decouple bulk and interfacial resistances of the cells. The Na+ diffusion coefficient in the HC host has been also evaluated via the Randles-Sevcik equation. Battery performance of HC anodes in the ionic liquid electrolytes has been evaluated in galvanostatic charge/discharge cycles at room temperature. The evolution of the SEI (solid electrochemical interface) layer grown on the HC surface has been carried out by Raman spectroscopy. Overall the sodiation process of the HC host is highly reversible and reproducible. In particular, a capacity retention exceeding 98 % of the initial value has been recorded in[N1114][FSI] electrolytes after more than 1500 cycles with a coulombic efficiency above 99 %, largely beyond standard carbonate-based electrolytes. Raman, transport properties and impedance confirms that ILs disclose the formation of SEI layers with superior ability to support the reversible Na+ intercalation with the possible minor contributions from the EMI+cation. The 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMI][FSI]) and, especially, N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide ([N1114][FSI]) have shown very good compatibility towards hard carbon electrode with excellent cycling behavior, which represents one of the best results obtained for hard carbon electrodes in ionic liquid electrolytes, exceeding even that exhibited in organic electrolytes, making them rather appealing for the realization of safe, reliable and highly performing Na-ion cells.image
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries
    Cao, Liyun
    Hui, Wenle
    Xu, Zhanwei
    Huang, Jianfeng
    Zheng, Peng
    Li, Jiayin
    Sun, Qianqian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 : 632 - 637
  • [22] Hard Carbon as Sodium-Ion Battery Anodes: Progress and Challenges
    Xiao, Biwei
    Rojo, Teofilo
    Li, Xiaolin
    CHEMSUSCHEM, 2019, 12 (01) : 133 - 144
  • [23] Spinifex nanocellulose derived hard carbon anodes for high-performance sodium-ion batteries
    Gaddam, Rohit Ranganathan
    Jiang, Edward
    Amiralian, Nasim
    Annamalai, Pratheep K.
    Martin, Darren J.
    Kumar, Nanjundan Ashok
    Zhao, X. S.
    SUSTAINABLE ENERGY & FUELS, 2017, 1 (05): : 1090 - 1097
  • [24] Biomass-derived carbon anodes for sodium-ion batteries
    Huang, Si
    Qiu, Xue-qing
    Wang, Cai-wei
    Zhong, Lei
    Zhang, Zhi-hong
    Yang, Shun-sheng
    Sun, Shi-rong
    Yang, Dong-Jie
    Zhang, Wen-li
    NEW CARBON MATERIALS, 2023, 38 (01) : 40 - 72
  • [25] Interfacial-Catalysis-Enabled Layered and Inorganic-Rich SEI on Hard Carbon Anodes in Ester Electrolytes for Sodium-Ion Batteries
    Liu, Mingquan
    Wu, Feng
    Gong, Yuteng
    Li, Yu
    Li, Ying
    Feng, Xin
    Li, Qiaojun
    Wu, Chuan
    Bai, Ying
    ADVANCED MATERIALS, 2023, 35 (29)
  • [26] Graphitic carbon foams as anodes for sodium-ion batteries in glyme-based electrolytes
    Rodriguez-Garcia, Jorge
    Camean, Ignacio
    Ramos, Alberto
    Rodriguez, Elena
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2018, 270 : 236 - 244
  • [27] Combining ionic liquid-based electrolytes and nanostructured anatase TiO2 anodes for intrinsically safer sodium-ion batteries
    Wu, Liming
    Moretti, Arianna
    Buchholz, Daniel
    Passerini, Stefano
    Bresser, Dominic
    ELECTROCHIMICA ACTA, 2016, 203 : 109 - 116
  • [28] Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies
    Liu, Liyang
    Tian, Ye
    Abdussalam, Abubakar
    Gilani, Muhammad Rehan Hasan Shah
    Zhang, Wei
    Xu, Guobao
    MOLECULES, 2022, 27 (19):
  • [29] Zinc Phosphides as Outstanding Sodium-Ion Battery Anodes
    Nam, Ki-Hun
    Hwa, Yoon
    Park, Cheol-Min
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15053 - 15062
  • [30] Fluoroalkoxyaluminate-based ionic liquids as electrolytes for sodium-ion batteries
    Fiates, Juliane
    Ratochinski, Rafael H.
    Lourenco, Tuanan C.
    Da Silva, Juarez L. F.
    Dias, Luis G.
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 369