Outstanding Compatibility of Hard-Carbon Anodes for Sodium-Ion Batteries in Ionic Liquid Electrolytes

被引:4
|
作者
Maresca, Giovanna [1 ,2 ]
Petrongari, Angelica [3 ]
Brutti, Sergio [3 ]
Battista Appetecchi, Giovanni [1 ]
机构
[1] ENEA, Mat & Physicochem Proc Tech Unit, SSPT, PROMAS,MATPRO, Via Anguillarese 301, I-00123 Rome, Italy
[2] Univ Roma La Sapienza, Dept Basic & Appl Sci Engn, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[3] Univ Roma La Sapienza, Dept Chem, Piazzale Aldo Moro 5, I-00185 Rome, Italy
基金
欧盟地平线“2020”;
关键词
sodium-ion batteries; ionic liquids; hard carbon; electrolytes; compatibility; INTERPHASE SEI; HIGH-CAPACITY; LITHIUM; PERFORMANCE; INSERTION;
D O I
10.1002/cssc.202300840
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbons (HC) from natural biowaste have been investigated as anodes for sodium-ion batteries in electrolytes based on 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMI][FSI]) and N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide ([N1114][FSI]) ionic liquids. The Na+ intercalation process has been analyzed by cyclic voltammetry tests, performed at different scan rates for hundreds of cycles, in combination with impedance spectroscopy measurements to decouple bulk and interfacial resistances of the cells. The Na+ diffusion coefficient in the HC host has been also evaluated via the Randles-Sevcik equation. Battery performance of HC anodes in the ionic liquid electrolytes has been evaluated in galvanostatic charge/discharge cycles at room temperature. The evolution of the SEI (solid electrochemical interface) layer grown on the HC surface has been carried out by Raman spectroscopy. Overall the sodiation process of the HC host is highly reversible and reproducible. In particular, a capacity retention exceeding 98 % of the initial value has been recorded in[N1114][FSI] electrolytes after more than 1500 cycles with a coulombic efficiency above 99 %, largely beyond standard carbonate-based electrolytes. Raman, transport properties and impedance confirms that ILs disclose the formation of SEI layers with superior ability to support the reversible Na+ intercalation with the possible minor contributions from the EMI+cation. The 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMI][FSI]) and, especially, N-trimethyl-N-butylammonium bis(fluorosulfonyl)imide ([N1114][FSI]) have shown very good compatibility towards hard carbon electrode with excellent cycling behavior, which represents one of the best results obtained for hard carbon electrodes in ionic liquid electrolytes, exceeding even that exhibited in organic electrolytes, making them rather appealing for the realization of safe, reliable and highly performing Na-ion cells.image
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Graphitic carbon foams as anodes for sodium-ion batteries in glyme-based electrolytes
    Rodriguez-Garcia, Jorge
    Camean, Ignacio
    Ramos, Alberto
    Rodriguez, Elena
    Garcia, Ana B.
    ELECTROCHIMICA ACTA, 2018, 270 : 236 - 244
  • [22] Flexible Precursor Modulation toward Selective Heteroatom Doping in a Hard-Carbon Anode for Sodium-Ion Batteries
    Zhang, Haihan
    Yang, Mingyu
    Xiao, Zichun
    Xie, Keyu
    Shao, Le
    Huang, Cheng
    Shu, Chengyong
    Peng, Chengxin
    Wu, Yuping
    Tang, Wei
    ENERGY & FUELS, 2023, 37 (19) : 15127 - 15137
  • [23] Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity
    Monti, Damien
    Jonsson, Erlendur
    Rosa Palacin, M.
    Johansson, Patrik
    JOURNAL OF POWER SOURCES, 2014, 245 : 630 - 636
  • [24] A Bifuctional Presodiation Reagent for Hard Carbon Anodes Enhancing Performance of Sodium-Ion Batteries
    Gao, Xiaoyu
    Sun, Yukun
    He, Bowen
    Nuli, Yanna
    Wang, Jiulin
    Yang, Jun
    ACS ENERGY LETTERS, 2024, 9 (03) : 1141 - 1147
  • [25] Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements
    Bommier, Clement
    Luo, Wei
    Gao, Wen-Yang
    Greaney, Alex
    Ma, Shengqian
    Ji, Xiulei
    CARBON, 2014, 76 : 165 - 174
  • [26] Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries
    Zhong, Xiongwu
    Wu, Ying
    Zeng, Sifan
    Yu, Yan
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (10) : 1248 - 1265
  • [27] Recent Advances in Carbon Anodes for Sodium-Ion Batteries
    Zhang, Tengfei
    Li, Chen
    Wang, Fan
    Noori, Abolhassan
    Mousavi, Mir F.
    Xia, Xinhui
    Zhang, Yongqi
    CHEMICAL RECORD, 2022, 22 (10):
  • [28] Ionic-conductive sodium titanate to boost sodium-ion transport kinetics of hard carbon anode in sodium-ion batteries
    Li, Fan
    Gong, Hao
    Zhang, Yanlei
    Liu, Xinyu
    Jiang, Zhenming
    Chen, Lian
    Huang, Jianying
    Zhang, Yanyan
    Jiang, Yinzhu
    Chen, Binmeng
    Tang, Yuxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 981
  • [29] Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon
    Wang, Feng
    Jiang, Zhenming
    Zhang, Yanyan
    Zhang, Yanlei
    Li, Jidao
    Wang, Huibo
    Jiang, Yinzhu
    Xing, Guichuan
    Liu, Hongchao
    Tang, Yuxin
    ESCIENCE, 2024, 4 (03):
  • [30] Effect of Conducting Salts in Ionic Liquid Electrolytes for Enhanced Cyclability of Sodium-Ion Batteries
    Minh Phuong Do
    Bucher, Nicolas
    Nagasubramanian, Arun
    Markovits, Iulius
    Tian Bingbing
    Fischer, Pauline J.
    Loh, Kian Ping
    Kuehn, Fritz E.
    Srinivasan, Madhavi
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (27) : 23972 - 23981