Estimating causal effects in observational studies for survival data with a cure fraction using propensity score adjustment

被引:1
|
作者
Wang, Ziwen [1 ]
Wang, Chenguang [2 ]
Wang, Xiaoguang [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
[2] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Div Biostat & Bioinformat, Baltimore, MD USA
关键词
causal effect; cure fraction; generalized Kaplan-Meier estimator; propensity score; time-to-event outcomes; BANDWIDTH SELECTION; R-PACKAGE; REGRESSION; MODELS; SUBCLASSIFICATION; INFERENCE; TIME; BIAS;
D O I
10.1002/bimj.202100357
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In observational studies, covariates are often confounding factors for treatment assignment. Such covariates need to be adjusted to estimate the causal treatment effect. For observational studies with survival outcomes, it is usually more challenging to adjust for the confounding covariates for causal effect estimation because of censoring. The challenge becomes even thornier when there exists a nonignorable cure fraction in the population. In this paper, we propose a causal effect estimation approach in observational studies for survival data with a cure fraction. We extend the absolute treatment effects on survival outcomes-including the restricted average causal effect and SPCE-to survival outcomes with cure fractions, and construct the corresponding causal effect estimators based on propensity score stratification. We prove the asymptotic properties of the proposed estimators and conduct simulation studies to evaluate their performances. As an illustration, the method is applied to a stomach cancer study.
引用
收藏
页数:23
相关论文
共 50 条