Spread-Out Bragg Peak in Treatment Planning System by Mixed Integer Linear Programming: a Proof of Concept

被引:0
作者
Spezialetti, Matteo [1 ]
de Lorenzo, Ramon Gimenez [2 ]
Gravina, Giovanni Luca [3 ]
Placidi, Giuseppe [4 ]
Rossi, Fabrizio [1 ]
Russo, Giorgio [5 ]
Smriglio, Stefano [1 ]
Vittorini, Francesca [2 ]
Mignosi, Filippo [1 ]
机构
[1] Univ Aquila, DISIM Dept, Laquila, Italy
[2] San Salvatore Hosp, Med Phys Unit, ASLI, Coppito, Abruzzo, Italy
[3] Univ Aquila, DISCAB Dept, Laquila, Italy
[4] Univ Aquila, MESVA Dept, Laquila, Italy
[5] Inst Mol Bioimaging & Physiol IBEM CNR, Palermo, Italy
来源
2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS | 2023年
关键词
Treatment Planning Systems; Proton Therapy; Computational Resources; Spread-out Bragg Peak; Mixed Integer Linear Programming; PROTON; OPTIMIZATION; PHYSICS; TOPAS;
D O I
10.1109/CBMS58004.2023.00277
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we analyze different Mixed Integer Linear Programming (MILP) models in order to produce 1D and 3D Spread-Out Bragg peaks (SOBP) for protons in water. Our techniques do not use much computational resources; in particular, all our experiments have been performed by a standard personal computer. As main result we give the proof of concept that the techniques that we use to create parameterized uniform SOBP can be fruitfully used in Treatment Planning Systems (TPS) for Intensity Modulated Proton Therapy (IMPT). As technical result we show, for the first time to our best knowledge, that there is a trade-off between the minimum number of energies (or layers) to be used to have a SOBP peak within a uniformity tolerance parameter Dt and the same parameter Dt. Minimizing the number of energies also has the advantage of reducing the delivery time using the facilities in operation nowadays.
引用
收藏
页码:548 / 554
页数:7
相关论文
共 21 条
  • [1] Recent developments in GEANT4
    Allison, J.
    Amako, K.
    Apostolakis, J.
    Arce, P.
    Asai, M.
    Aso, T.
    Bagli, E.
    Bagulya, A.
    Banerjee, S.
    Barrand, G.
    Beck, B. R.
    Bogdanov, A. G.
    Brandt, D.
    Brown, J. M. C.
    Burkhardt, H.
    Canal, Ph.
    Cano-Ott, D.
    Chauvie, S.
    Cho, K.
    Cirrone, G. A. P.
    Cooperman, G.
    Cortes-Giraldo, M. A.
    Cosmo, G.
    Cuttone, G.
    Depaola, G.
    Desorgher, L.
    Dong, X.
    Dotti, A.
    Elvira, V. D.
    Folger, G.
    Francis, Z.
    Galoyan, A.
    Garnier, L.
    Gayer, M.
    Genser, K. L.
    Grichine, V. M.
    Guatelli, S.
    Gueye, P.
    Gumplinger, P.
    Howard, A. S.
    Hrivnacova, I.
    Hwang, S.
    Incerti, S.
    Ivanchenko, A.
    Ivanchenko, V. N.
    Jones, F. W.
    Jun, S. Y.
    Kaitaniemi, P.
    Karakatsanis, N.
    Karamitrosi, M.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 : 186 - 225
  • [2] Combinatorial optimisation in radiotherapy treatment planning
    Altobelli, Emma
    Amichetti, Maurizio
    Langiu, Alessio
    Marzi, Francesca
    Mignosi, Filippo
    Pisciotta, Pietro
    Placidi, Giuseppe
    Rossi, Fabrizio
    Russo, Giorgio
    Schwarz, Marco
    Smriglio, Stefano
    Vennarini, Sabina
    [J]. AIMS MEDICAL SCIENCE, 2018, 5 (03): : 204 - 223
  • [3] An analytical approximation of the Bragg curve for therapeutic proton beams
    Bortfeld, T
    [J]. MEDICAL PHYSICS, 1997, 24 (12) : 2024 - 2033
  • [4] Proton energy optimization and reduction for intensity-modulated proton therapy
    Cao, Wenhua
    Lim, Gino
    Liao, Li
    Li, Yupeng
    Jiang, Shengpeng
    Li, Xiaoqiang
    Li, Heng
    Suzuki, Kazumichi
    Zhu, X. Ronald
    Gomez, Daniel
    Zhang, Xiaodong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (21) : 6341 - 6354
  • [5] The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research
    Faddegon, Bruce
    Ramos-Mendez, Jose
    Schuemann, Jan
    McNamara, Aimee
    Shin, Jungwook
    Perl, Joseph
    Paganetti, Harald
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 72 : 114 - 121
  • [6] Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning
    Farace, Paolo
    Bizzocchi, Nicola
    Righetto, Roberto
    Fellin, Francesco
    Fracchiolla, Francesco
    Lorentini, Stefano
    Widesott, Lamberto
    Algranati, Carlo
    Rombi, Barbara
    Vennarini, Sabina
    Amichetti, Maurizio
    Schwarz, Marco
    [J]. RADIOTHERAPY AND ONCOLOGY, 2017, 123 (01) : 112 - 118
  • [7] Gurobi Optimization LLC, 2023, Gurobi optimizer reference manual
  • [8] Creating a spread-out Bragg peak in proton beams
    Jette, David
    Chen, Weimin
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (11) : N131 - N138
  • [9] Costlets: A generalized approach to cost functions for automated optimization of IMRT treatment plans
    Kessler, ML
    McShan, DL
    Epelman, MA
    Vineberg, KA
    Eisbruch, A
    Lawrence, TS
    Fraass, BA
    [J]. OPTIMIZATION AND ENGINEERING, 2005, 6 (04) : 421 - 448
  • [10] Minimum-MU and sparse-energy-layer (MMSEL) constrained inverse optimization method for efficiently deliverable PBS plans
    Lin, Yuting
    Clasie, Benjamin
    Liu, Tian
    McDonald, Mark
    Langen, Katja M.
    Gao, Hao
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (20)