Unique continuation for the gradient of eigenfunctions and Wegner estimates for random divergence-type operators

被引:0
作者
Dicke, Alexander [1 ]
Veselic, Ivan [1 ]
机构
[1] Tech Univ Dortmund, Dortmund, Germany
关键词
Unique continuation for the gradient; of eigenfunctions; Random divergence-type operators; Wegner estimate; Eigenvalue lifting; CLASSICAL WAVES; LOCALIZATION; EIGENVALUES; EQUATIONS; BOUNDS;
D O I
10.1016/j.jfa.2023.110040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a scale-free quantitative unique continuation estimate for the gradient of eigenfunctions of divergence-type operators, i.e., operators of the form -divA backward difference , where the matrix function A is uniformly elliptic. The proof uses a unique continuation principle for elliptic second-order operators and a lower bound on the L2-norm of the gradient of eigenfunctions corresponding to strictly positive eigenvalues. As an application, we prove an eigenvalue lifting estimate that allows us to prove a Wegner estimate for random divergencetype operators. Here our approach allows us to get rid of a restrictive covering condition that was essential in previous proofs of Wegner estimates for such models.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 35 条
[21]   Unique continuation and lifting of spectral band edges of Schrodinger operators on unbounded domains [J].
Nakic, Ivica ;
Taufer, Matthias ;
Tautenhahn, Martin ;
Veselic, Ivan ;
Seelmann, Albrecht .
JOURNAL OF SPECTRAL THEORY, 2020, 10 (03) :843-885
[22]   A quantitative Carleman estimate for second-order elliptic operators [J].
Nakic, Ivica ;
Rose, Christian ;
Tautenhahn, Martin .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) :915-938
[23]   SCALE-FREE UNIQUE CONTINUATION PRINCIPLE FOR SPECTRAL PROJECTORS, EIGENVALUE-LIFTING AND WEGNER ESTIMATES FOR RANDOM SCHRODINGER OPERATORS [J].
Nakic, Ivica ;
Taeufer, Matthias ;
Tautenhahn, Martin ;
Veselic, Ivan .
ANALYSIS & PDE, 2018, 11 (04) :1049-1081
[24]  
Nkashama MN, 2010, J COMPUT ANAL APPL, V12, P293
[25]  
PLIS A, 1960, J MATH MECH, V9, P557
[26]  
Reed M., 1980, METHODS MODERN MATH
[27]   Scale-Free Unique Continuation Estimates and Applications to Random Schrodinger Operators [J].
Rojas-Molina, Constanza ;
Veselic, Ivan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (01) :245-274
[28]   Band Edge Localization Beyond Regular Floquet Eigenvalues [J].
Seelmann, Albrecht ;
Taeufer, Matthias .
ANNALES HENRI POINCARE, 2020, 21 (07) :2151-2166
[29]   Localization for random perturbations of anisotropic periodic media [J].
Stollmann, P .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 107 (1) :125-139
[30]  
STOLLMANN P., 2001, CAUGHT DISORDER BOUN, V20