Unique continuation for the gradient of eigenfunctions and Wegner estimates for random divergence-type operators

被引:0
作者
Dicke, Alexander [1 ]
Veselic, Ivan [1 ]
机构
[1] Tech Univ Dortmund, Dortmund, Germany
关键词
Unique continuation for the gradient; of eigenfunctions; Random divergence-type operators; Wegner estimate; Eigenvalue lifting; CLASSICAL WAVES; LOCALIZATION; EIGENVALUES; EQUATIONS; BOUNDS;
D O I
10.1016/j.jfa.2023.110040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a scale-free quantitative unique continuation estimate for the gradient of eigenfunctions of divergence-type operators, i.e., operators of the form -divA backward difference , where the matrix function A is uniformly elliptic. The proof uses a unique continuation principle for elliptic second-order operators and a lower bound on the L2-norm of the gradient of eigenfunctions corresponding to strictly positive eigenvalues. As an application, we prove an eigenvalue lifting estimate that allows us to prove a Wegner estimate for random divergencetype operators. Here our approach allows us to get rid of a restrictive covering condition that was essential in previous proofs of Wegner estimates for such models.& COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:28
相关论文
共 35 条
[1]  
[Anonymous], 1998, Mathematical Physics, Analysis and Geometry
[2]   Scale-free quantitative unique continuation and equidistribution estimates for solutions of elliptic differential equations [J].
Borisov, Denis ;
Tautenhahn, Martin ;
Veselic, Ivan .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
[3]   On localization in the continuous Anderson-Bernoulli model in higher dimension [J].
Bourgain, J ;
Kenig, CE .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :389-426
[4]  
Combes JM, 2003, INT MATH RES NOTICES, V2003, P179
[5]  
Dal Maso Gianni, 1993, Prog. Nonlinear Differ. Equ. Appl., V8
[6]   Wegner Estimate for Random Divergence-Type Operators Monotone in the Randomness [J].
Dicke, Alexander .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2021, 24 (03)
[7]  
Escauriaza L., 2003, Inverse Problems: Theory and Applications, V333, P79, DOI 10.1090/conm/333/05955
[8]   Localization of classical waves II: Electromagnetic waves [J].
Figotin, A ;
Klein, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 184 (02) :411-441
[9]   Localization of classical waves .1. Acoustic waves [J].
Figotin, A ;
Klein, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 180 (02) :439-482
[10]   A comprehensive proof of localization for continuous Anderson models with singular random potentials [J].
Germinet, Francois ;
Klein, Abel .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (01) :53-143