Structural and functional connectivity reconstruction with CATO- A Connectivity Analysis TOolbox

被引:17
作者
de Lange, Siemon C. [1 ,2 ,4 ]
Helwegen, Koen [2 ]
van den Heuvel, Martijn P. [2 ,3 ]
机构
[1] Netherlands Inst Neurosci NIN, Inst Royal Netherlands Acad Arts & Sci, Dept Sleep & Cognit, Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Ctr Neurogenom & Cognit Res, Dept Complex Trait Genet, Amsterdam Neurosci, Amsterdam, Netherlands
[3] Amsterdam UMC Locat Vrije Univ Amsterdam, Dept Child & Adolescent Psychiat & Psychol, Amsterdam, Netherlands
[4] Boelelaan 1085,W&N B-651, NL-1081 HV Amsterdam, Netherlands
基金
欧洲研究理事会;
关键词
PREPROCESSING PIPELINES; HUMAN CONNECTOME; BRAIN; MRI; ROBUST; ACCURATE; MOTION;
D O I
10.1016/j.neuroimage.2023.120108
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We describe a Connectivity Analysis TOolbox (CATO) for the reconstruction of structural and functional brain connectivity based on diffusion weighted imaging and resting-state functional MRI data. CATO is a multimodal software package that enables researchers to run end-to-end reconstructions from MRI data to structural and functional connectome maps, customize their analyses and utilize various software packages to preprocess data. Structural and functional connectome maps can be reconstructed with respect to user-defined (sub)cortical atlases providing aligned connectivity matrices for integrative multimodal analyses. We outline the imple-mentation and usage of the structural and functional processing pipelines in CATO. Performance was calibrated with respect to simulated diffusion weighted imaging data from the ITC2015 challenge and test-retest diffusion weighted imaging data and resting-state functional MRI data from the Human Connectome Project. CATO is open-source software distributed under the MIT License and available as a MATLAB toolbox and as a stand-alone application at www.dutchconnectomelab.nl/CATO .
引用
收藏
页数:12
相关论文
共 74 条
[1]   Diffusion tensor imaging of the brain [J].
Alexander, Andrew L. ;
Lee, Jee Eun ;
Lazar, Mariana ;
Field, Aaron S. .
NEUROTHERAPEUTICS, 2007, 4 (03) :316-329
[2]   An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging [J].
Andersson, Jesper L. R. ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2016, 125 :1063-1078
[3]   Scaling Principles of White Matter Connectivity in the Human and Nonhuman Primate Brain [J].
Ardesch, Dirk Jan ;
Scholtens, Lianne H. ;
de Lange, Siemon C. ;
Roumazeilles, Lea ;
Khrapitchev, Alexandre A. ;
Preuss, Todd M. ;
Rilling, James K. ;
Mars, Rogier B. ;
van den Heuvel, Martijn P. .
CEREBRAL CORTEX, 2022, 32 (13) :2831-2842
[4]   Parallel Transport Tractography [J].
Aydogan, Dogu Baran ;
Shi, Yonggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (02) :635-647
[5]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI 10.1016/j.jmr.2011.09.022
[6]   Network neuroscience [J].
Bassett, Danielle S. ;
Sporns, Olaf .
NATURE NEUROSCIENCE, 2017, 20 (03) :353-364
[7]   The economy of brain network organization [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (05) :336-349
[8]   Mapping the human connectome at multiple scales with diffusion spectrum MRI [J].
Cammoun, Leila ;
Gigandet, Xavier ;
Meskaldji, Djalel ;
Thiran, Jean Philippe ;
Sporns, Olaf ;
Do, Kim Q. ;
Maeder, Philippe ;
Meuli, Reto ;
Hagmann, Patric .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 203 (02) :386-397
[9]   RESTORE: Robust estimation of tensors by outlier rejection [J].
Chang, LC ;
Jones, DK ;
Pierpaoli, C .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) :1088-1095
[10]  
Cicchetti D.V., 1994, Psychological Assessment, V6, P284, DOI [DOI 10.1037/1040-3590.6.4.284, DOI 10.1037//1040-3590.6.4.284]