Explainable detection of atrial fibrillation using deep convolutional neural network with UCMFB

被引:0
作者
Rao, B. Mohan [1 ]
Kumar, Aman [1 ]
机构
[1] Natl Inst Technol, Dept Elect & Commun Engn, Hamirpur, Himachal Prades, India
基金
英国科研创新办公室;
关键词
Deep convolutional neural network; Electrocardiogram; Atrial fibrillation; Uniform cosine modulated filter bank; Accuracy; Specificity; Precision; Sensitivity; F1-score; ROC; ARTIFICIAL-INTELLIGENCE; AUTOMATED DETECTION; ECG SIGNALS; FILTER-BANK; OUTLIER DETECTION; PREDICTION MODEL; DIAGNOSIS; CLASSIFICATION;
D O I
10.1007/s11042-023-15123-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Atrial fibrillation (AF) is considered to be the most dangerous cardiovascular disease and its prevalence is growing year by year. In this work, an automated detection system for the early identification of atrial fibrillation is presented. A deep convolutional neural network (DCNN) model along with the uniform cosine modulated filter banks (UCMFB) is utilized for the classification purpose. The ECG signal is first decomposed into 8 sub-signals using 8-channel UCMFB and out of which first 6 sub-signals are utilised for the further processing. These sub-signals converted into images using wavelet transform packet (WTP) by considering short segments of 5 seconds. These images are then fed to DCNN model for the classification, and tested over MIT-BIH AF and normal sinus rhythm (NSR) databases. The proposed method has achieved an overall Accuracy of 99.82%, Sensitivity of 99.86%, Precision of 99.86%, Specificity of 99.87%, F1-score of 99.82%, and ROC of 100%. It is observed that the proposed method is able to achieve the best label classification when the ECG signal is converted into images. Also, the DCNN based method decreases the false diagnosis rates in identification of AF.
引用
收藏
页码:40683 / 40700
页数:18
相关论文
共 66 条
[1]   Convolutional Neural Networks for Speech Recognition [J].
Abdel-Hamid, Ossama ;
Mohamed, Abdel-Rahman ;
Jiang, Hui ;
Deng, Li ;
Penn, Gerald ;
Yu, Dong .
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2014, 22 (10) :1533-1545
[2]   A deep convolutional neural network model to classify heartbeats [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adam, Muhammad ;
Gertych, Arkadiusz ;
Tan, Ru San .
COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 89 :389-396
[3]   Classification of myocardial infarction with multi-lead ECG signals and deep CNN [J].
Baloglu, Ulas Baran ;
Talo, Muhammed ;
Yildirim, Ozal ;
Tan, Ru San ;
Acharya, U. Rajendra .
PATTERN RECOGNITION LETTERS, 2019, 122 :23-30
[4]   2012 focused update of the ESC Guidelines for the management of atrial fibrillation [J].
Camm, A. John ;
Lip, Gregory Y. H. ;
De Caterina, Raffaele ;
Savelieva, Irene ;
Atar, Dan ;
Hohnloser, Stefan H. ;
Hindricks, Gerhard ;
Kirchhof, Paulus ;
Bax, Jeroen J. ;
Baumgartner, Helmut ;
Ceconi, Claudio ;
Dean, Veronica ;
Deaton, Christi ;
Fagard, Robert ;
Funck-Brentano, Christian ;
Hasdai, David ;
Hoes, Arno ;
Knuuti, Juhani ;
Kolh, Philippe ;
McDonagh, Theresa ;
Moulin, Cyril ;
Popescu, Bogdan A. ;
Reiner, Zeljko ;
Sechtem, Udo ;
Sirnes, Per Anton ;
Tendera, Michal ;
Torbicki, Adam ;
Vahanian, Alec ;
Windecker, Stephan ;
Vardas, Panos ;
Al-Attar, Nawwar ;
Alfieri, Ottavio ;
Angelini, Annalisa ;
Blomstrom-Lundqvist, Carina ;
Colonna, Paolo ;
De Sutter, Johan ;
Ernst, Sabine ;
Goette, Andreas ;
Gorenek, Bulent ;
Hatala, Robert ;
Heidbuchel, Hein ;
Heldal, Magnus ;
Kristensen, Steen Dalby ;
Le Heuzey, Jean-Yves ;
Mavrakis, Hercules ;
Mont, Lluis ;
Filardi, Pasquale Perrone ;
Ponikowski, Piotr ;
Prendergast, Bernard ;
Rutten, Frans H. .
EUROPEAN HEART JOURNAL, 2012, 33 (21) :2719-2747
[5]  
Camm AJ, 2010, EUROPACE, V12, P1360, DOI [10.1093/europace/euq350, 10.1093/eurheartj/ehq278]
[6]   The Effects of Compression on the Detection of Atrial Fibrillation in ECG Signals [J].
Cervigon, Raquel ;
McGinley, Brian ;
Craven, Darren ;
Glavin, Martin ;
Jones, Edward .
APPLIED SCIENCES-BASEL, 2021, 11 (13)
[7]   Computationally Efficient Cosine Modulated Filter Bank Design for ECG Signal Compression [J].
Chandra, S. ;
Sharma, A. ;
Singh, G. K. .
IRBM, 2020, 41 (01) :2-17
[8]   Atrial fibrillation detection based on multi-feature extraction and convolutional neural network for processing ECG signals [J].
Chen, Xianjie ;
Cheng, Zhaoyun ;
Wang, Sheng ;
Lu, Guoqing ;
Xv, Gaojun ;
Liu, Qianjin ;
Zhu, Xiliang .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 202
[9]  
[陈煜 Chen Yu], 2013, [航天医学与医学工程, Space Medicine & Medical Engineering], V26, P352
[10]   A Diagnostic System for Detection of Atrial and Ventricular Arrhythmia Episodes from Electrocardiogram [J].
Chetan, Apoorv ;
Tripathy, Rajesh K. ;
Dandapat, Samarendra .
JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2018, 38 (02) :304-315