Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy

被引:23
作者
den Boer, R. B. [1 ]
Jaspers, T. J. M. [2 ]
de Jongh, C. [1 ]
Pluim, J. P. W. [2 ]
van der Sommen, F. [3 ]
Boers, T. [3 ]
van Hillegersberg, R. [1 ]
Van Eijnatten, M. A. J. M. [2 ]
Ruurda, J. P. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Surg, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[2] Eindhoven Univ Technol, Dept Biomed Engn, Groene Loper 3, NL-5612 AE Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Elect Engn, Groene Loper 19, NL-5612 AP Eindhoven, Netherlands
来源
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES | 2023年 / 37卷 / 07期
关键词
Surgery; Anatomy recognition; Deep learning; Computer vision; Robotics; MEDICAL IMAGE SEGMENTATION; NAVIGATION SYSTEM; CHEMORADIOTHERAPY; SURGERY; CURVE;
D O I
10.1007/s00464-023-09990-z
中图分类号
R61 [外科手术学];
学科分类号
摘要
ObjectiveTo develop a deep learning algorithm for anatomy recognition in thoracoscopic video frames from robot-assisted minimally invasive esophagectomy (RAMIE) procedures using deep learning.BackgroundRAMIE is a complex operation with substantial perioperative morbidity and a considerable learning curve. Automatic anatomy recognition may improve surgical orientation and recognition of anatomical structures and might contribute to reducing morbidity or learning curves. Studies regarding anatomy recognition in complex surgical procedures are currently lacking.MethodsEighty-three videos of consecutive RAMIE procedures between 2018 and 2022 were retrospectively collected at University Medical Center Utrecht. A surgical PhD candidate and an expert surgeon annotated the azygos vein and vena cava, aorta, and right lung on 1050 thoracoscopic frames. 850 frames were used for training of a convolutional neural network (CNN) to segment the anatomical structures. The remaining 200 frames of the dataset were used for testing the CNN. The Dice and 95% Hausdorff distance (95HD) were calculated to assess algorithm accuracy.ResultsThe median Dice of the algorithm was 0.79 (IQR = 0.20) for segmentation of the azygos vein and/or vena cava. A median Dice coefficient of 0.74 (IQR = 0.86) and 0.89 (IQR = 0.30) were obtained for segmentation of the aorta and lung, respectively. Inference time was 0.026 s (39 Hz). The prediction of the deep learning algorithm was compared with the expert surgeon annotations, showing an accuracy measured in median Dice of 0.70 (IQR = 0.19), 0.88 (IQR = 0.07), and 0.90 (0.10) for the vena cava and/or azygos vein, aorta, and lung, respectively.ConclusionThis study shows that deep learning-based semantic segmentation has potential for anatomy recognition in RAMIE video frames. The inference time of the algorithm facilitated real-time anatomy recognition. Clinical applicability should be assessed in prospective clinical studies.
引用
收藏
页码:5164 / 5175
页数:12
相关论文
共 44 条
[1]   Deep learning visual analysis in laparoscopic surgery: a systematic review and diagnostic test accuracy meta-analysis [J].
Anteby, Roi ;
Horesh, Nir ;
Soffer, Shelly ;
Zager, Yaniv ;
Barash, Yiftach ;
Amiel, Imri ;
Rosin, Danny ;
Gutman, Mordechai ;
Klang, Eyal .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2021, 35 (04) :1521-1533
[2]   Intraoperative image-guided navigation system: development and applicability in 65 patients undergoing liver surgery [J].
Banz, Vanessa M. ;
Mueller, Philip C. ;
Tinguely, Pascale ;
Inderbitzin, Daniel ;
Ribes, Delphine ;
Peterhans, Matthias ;
Candinas, Daniel ;
Weber, Stefan .
LANGENBECKS ARCHIVES OF SURGERY, 2016, 401 (04) :495-502
[3]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[4]   Emerging Properties in Self-Supervised Vision Transformers [J].
Caron, Mathilde ;
Touvron, Hugo ;
Misra, Ishan ;
Jegou, Herve ;
Mairal, Julien ;
Bojanowski, Piotr ;
Joulin, Armand .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9630-9640
[5]   Inducing metallicity in graphene nanoribbons via zero-mode superlattices [J].
Rizzo, Daniel J. ;
Veber, Gregory ;
Jiang, Jingwei ;
McCurdy, Ryan ;
Cao, Ting ;
Bronner, Christopher ;
Chen, Ting ;
Louie, Steven G. ;
Fischer, Felix R. ;
Crommie, Michael F. .
SCIENCE, 2020, 369 (6511) :1597-+
[6]   A review of medical image data augmentation techniques for deep learning applications [J].
Chlap, Phillip ;
Min, Hang ;
Vandenberg, Nym ;
Dowling, Jason ;
Holloway, Lois ;
Haworth, Annette .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2021, 65 (05) :545-563
[7]   Deep-Learning System Detects Neoplasia in Patients With Barrett's Esophagus With Higher Accuracy Than Endoscopists in a Multistep Training and Validation Study With Benchmarking [J].
de Groof, Albert J. ;
Struyvenberg, Maarten R. ;
van der Putten, Joost ;
van der Sommen, Fons ;
Fockens, Kiki N. ;
Curvers, Wouter L. ;
Zinger, Sveta ;
Pouw, Roos E. ;
Coron, Emmanuel ;
Baldaque-Silva, Francisco ;
Pech, Oliver ;
Weusten, Bas ;
Meining, Alexander ;
Neuhaus, Horst ;
Bisschops, Raf ;
Dent, John ;
Schoon, Erik J. ;
de With, Peter H. ;
Bergman, Jacques J. .
GASTROENTEROLOGY, 2020, 158 (04) :915-+
[8]   Computer-aided anatomy recognition in intrathoracic and -abdominal surgery: a systematic review [J].
den Boer, R. B. ;
de Jongh, C. ;
Huijbers, W. T. E. ;
Jaspers, T. J. M. ;
Pluim, J. P. W. ;
van Hillegersberg, R. ;
Van Eijnatten, M. ;
Ruurda, J. P. .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2022, 36 (12) :8737-8752
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   Intraoperative navigation system with a multi-modality fusion of 3D virtual model and laparoscopic real-time images in laparoscopic pancreatic surgery: a preclinical study [J].
Du, Chengxu ;
Li, Jiaxuan ;
Zhang, Bin ;
Feng, Wenfeng ;
Zhang, Tengfei ;
Li, Dongrui .
BMC SURGERY, 2022, 22 (01)