The new era of artificial intelligence in neuroradiology: current research and promising tools

被引:0
作者
Macruz, Fabiola Bezerra de Carvalho [1 ,2 ,3 ,4 ]
Dias, Ana Luiza Mandetta Pettengil [5 ]
Andrade, Celi Santos [6 ]
Nucci, Mariana Penteado [3 ]
Rimkus, Carolina de Medeiros [1 ,2 ,3 ]
Lucato, Leandro Tavares [1 ,5 ]
da Rocha, Antonio Jose [5 ]
Kitamura, Felipe Campos [5 ,7 ]
机构
[1] Univ Sao Paulo, Hosp Clin, Fac Med, Dept Radiol & Oncol,Secao Neurorradiol, Sao Paulo, SP, Brazil
[2] Rede DOr Sao Luiz, Dept Radiol & Diagnost Imagem, Sao Paulo, SP, Brazil
[3] Univ Sao Paulo, Lab Invest Med Ressonancia Magnet LIM 44, Sao Paulo, SP, Brazil
[4] Acad Nacl Med, Rio De Janeiro, RJ, Brazil
[5] Diagnost Amer SA, Sao Paulo, SP, Brazil
[6] Allianca Grp, Ctr Diagnost Brasil, Sao Paulo, SP, Brazil
[7] Univ Fed Sao Paulo, Sao Paulo, SP, Brazil
关键词
Artificial Intelligence; Deep Learning; Machine Learning; Neuroradiology; Inteligencia Artificial; Aprendizado Profundo; Aprendizado de Maquina; Neurorradiologia; DIGITAL-SUBTRACTION-ANGIOGRAPHY; MULTIPLE-SCLEROSIS; MOYAMOYA-DISEASE; DIAGNOSIS; MRI; EPILEPSY; SIGN;
D O I
10.1055/s-0044-1779486
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Radiology has a number of characteristics that make it an especially suitable medical discipline for early artificial intelligence (AI) adoption. These include having a well-established digital workflow, standardized protocols for image storage, and numerous well-defined interpretive activities. The more than 200 commercial radiologic AI-based products recently approved by the Food and Drug Administration (FDA) to assist radiologists in a number of narrow image-analysis tasks such as image enhancement, workflow triage, and quantification, corroborate this observation. However, in order to leverage AI to boost efficacy and efficiency, and to overcome substantial obstacles to widespread successful clinical use of these products, radiologists should become familiarized with the emerging applications in their particular areas of expertise. In light of this, in this article we survey the existing literature on the application of AI-based techniques in neuroradiology, focusing on conditions such as vascular diseases, epilepsy, and demyelinating and neurodegenerative conditions. We also introduce some of the algorithms behind the applications, briefly discuss a few of the challenges of generalization in the use of AI models in neuroradiology, and skate over the most relevant commercially available solutions adopted in clinical practice. If well designed, AI algorithms have the potential to radically improve radiology, strengthening image analysis, enhancing the value of quantitative imaging techniques, and mitigating diagnostic errors.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 100 条
  • [1] Akiyama Y, 2020, J STROKE CEREBROVASC, V29, DOI [10.1016/j.jstrokecerebrovasdis.2020.105322, 10.1016/j.strokecerebrovasdis.2020.105322]
  • [2] Improved Cerebral Arteriovenous Malformation Obliteration With 3-Dimensional Rotational Digital Subtraction Angiography for Radiosurgical Planning: A Retrospective Cohort Study
    Anderson, Joshua L.
    Khattab, Mohamed H.
    Sherry, Alexander D.
    Luo, Guozhen
    Chitale, Rohan, V
    Froehler, Michael T.
    Fusco, Matthew R.
    Cmelak, Anthony J.
    Attia, Albert
    [J]. NEUROSURGERY, 2020, 88 (01) : 122 - 130
  • [3] Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities
    Aslam, Nida
    Khan, Irfan Ullah
    Bashamakh, Asma
    Alghool, Fatima A.
    Aboulnour, Menna
    Alsuwayan, Noorah M.
    Alturaif, Rawa'a K.
    Brahimi, Samiha
    Aljameel, Sumayh S.
    Al Ghamdi, Kholoud
    [J]. SENSORS, 2022, 22 (20)
  • [4] Babin D, 2013, C P C P ANN INT C IE, P5449, DOI [10.1109/EMBC.2013.6610782, DOI 10.1109/EMBC.2013.6610782]
  • [5] Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery
    Blumcke, I.
    Spreafico, R.
    Haaker, G.
    Coras, R.
    Kobow, K.
    Bien, C. G.
    Pfaefflin, M.
    Elger, C.
    Widman, G.
    Schramm, J.
    Becker, A.
    Braun, K. P.
    Leijten, F.
    Baayen, J. C.
    Aronica, E.
    Chassoux, F.
    Hamer, H.
    Stefan, H.
    Roessler, K.
    Thom, M.
    Walker, M. C.
    Sisodiya, S. M.
    Duncan, J. S.
    McEvoy, A. W.
    Pieper, T.
    Holthausen, H.
    Kudernatsch, M.
    Meencke, H. J.
    Kahane, P.
    Schulze-Bonhage, A.
    Zentner, J.
    Heiland, D. H.
    Urbach, H.
    Steinhoff, B. J.
    Bast, T.
    Tassi, L.
    Lo Russo, G.
    Ozkara, C.
    Oz, B.
    Krsek, P.
    Vogelgesang, S.
    Runge, U.
    Lerche, H.
    Weber, Y.
    Honavar, M.
    Pimentel, J.
    Arzimanoglou, A.
    Ulate-Campos, A.
    Noachtar, S.
    Hartl, E.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2017, 377 (17) : 1648 - 1656
  • [6] Role of artificial intelligence in MS clinical practice
    Bonacchi, Raffaello
    Filippi, Massimo
    Rocca, Maria A.
    [J]. NEUROIMAGE-CLINICAL, 2022, 35
  • [7] Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging
    Bridge, Christopher P.
    Bizzo, Bernardo C.
    Hillis, James M.
    Chin, John K.
    Comeau, Donnella S.
    Gauriau, Romane
    Macruz, Fabiola
    Pawar, Jayashri
    Noro, Flavia T. C.
    Sharaf, Elshaimaa
    Takahashi, Marcelo Straus
    Wright, Bradley
    Kalafut, John F.
    Andriole, Katherine P.
    Pomerantz, Stuart R.
    Pedemonte, Stefano
    Gonzalez, R. Gilberto
    [J]. SCIENTIFIC REPORTS, 2022, 12 (01)
  • [8] Cacciaguerra L., 2022, Augmenting Neurological Disorder Prediction and Rehabilitation Using Artificial Intelligence, V107, P144
  • [9] Brain and cord imaging features in neuromyelitis optica spectrum disorders
    Cacciaguerra, Laura
    Meani, Alessandro
    Mesaros, Sarlota
    Radaelli, Marta
    Palace, Jacqueline
    Dujmovic-Basuroski, Irena
    Pagani, Elisabetta
    Martinelli, Vittorio
    Matthews, Lucy
    Drulovic, Jelena
    Leite, Maria Isabel
    Comi, Giancarlo
    Filippi, Massimo
    Rocca, Maria A.
    [J]. ANNALS OF NEUROLOGY, 2019, 85 (03) : 371 - 384
  • [10] A Distinct MR Imaging Phenotype in Amyotrophic Lateral Sclerosis: Correlation between T1 Magnetization Transfer Contrast Hyperintensity along the Corticospinal Tract and Diffusion Tensor Imaging Analysis
    Carrara, G.
    Carapelli, C.
    Venturi, F.
    Ferraris, M. M.
    Lequio, L.
    Chio, A.
    Calvo, A.
    Sirgiovanni, S.
    Cistaro, A.
    Valentini, M. C.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (04) : 733 - 739