Causally Simple Spacetimes and Naked Singularities

被引:0
|
作者
Vatandoost, Mehdi [1 ]
Pourkhandani, Rahimeh [1 ]
Ebrahimi, Neda [2 ]
机构
[1] Hakim Sabzevari Univ, Dept Math & Comp Sci, Sabzevar, Iran
[2] Shahid Bahonar Univ Kerman, Fac Math & Comp, Mahani Math Res Ctr, Dept Pure Math, Kerman, Iran
关键词
Spacetime topology; Singularities and Cosmic censorship; Pseudoconvexity; COSMIC CENSORSHIP;
D O I
10.1007/s40995-024-01594-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we prove the two-dimensional case of a conjecture in general relativity, which states that if M is a nakedly singular future boundary or nakedly singular past boundary strongly causal spacetime, then the space of null geodesics, N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N}$$\end{document}, is non-Hausdorff. Also, we show that every two-dimensional strongly causal spacetime M is causally simple if and only if it is null pseudoconvex. This fact implies the converse of the above conjecture; that is, if the space of null geodesics of a two-dimension causal continuous spacetime M is non-Hausdorff, then M is a nakedly singular future boundary or nakedly singular past boundary spacetime. However, some examples refute it for more dimensions.
引用
收藏
页码:443 / 451
页数:9
相关论文
共 33 条