Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance

被引:32
|
作者
Tang, Xiao [1 ]
Hao, Qi [1 ]
Hou, Xiangyu [1 ,2 ]
Lan, Leilei [1 ,3 ]
Li, Mingze [1 ]
Yao, Lei [1 ]
Zhao, Xing [1 ]
Ni, Zhenhua [1 ]
Fan, Xingce [1 ]
Qiu, Teng [1 ]
机构
[1] Southeast Univ, Sch Phys, Key Lab Quantum Mat & Devices, Minist Educ, Nanjing 211189, Peoples R China
[2] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[3] Anhui Univ Sci & Technol, Sch Mech & Optoelect Phys, Huainan 232001, Peoples R China
基金
中国国家自然科学基金;
关键词
charge transfer; chemical mechanism; surface-enhanced Raman scattering; transition metal dichalcogenides; ENHANCED RAMAN-SCATTERING; SPECTROSCOPY; NANOSHEETS; GRAPHENE; OXIDATION; NANOPARTICLES; MOLECULES; PHOTOLUMINESCENCE; PYRIDINE; SPECTRA;
D O I
10.1002/adma.202312348
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive surface analysis technique that is widely used in chemical sensing, bioanalysis, and environmental monitoring. The design of the SERS substrates is crucial for obtaining high-quality SERS signals. Recently, 2D transition metal dichalcogenides (2D TMDs) have emerged as high-performance SERS substrates due to their superior stability, ease of fabrication, biocompatibility, controllable doping, and tunable bandgaps and excitons. In this review, a systematic overview of the latest advancements in 2D TMDs SERS substrates is provided. This review comprehensively summarizes the candidate 2D TMDs SERS materials, elucidates their working principles for SERS, explores the strategies to optimize their SERS performance, and highlights their practical applications. Particularly delved into are the material engineering strategies, including defect engineering, alloy engineering, thickness engineering, and heterojunction engineering. Additionally, the challenges and future prospects associated with the development of 2D TMDs SERS substrates are discussed, outlining potential directions that may lead to significant breakthroughs in practical applications. This review provides a comprehensive and systematic overview of advancements in 2D transition metal dichalcogenides (2D TMDs) surface-enhanced Raman scattering (SERS) substrates, detailing the enhancement mechanisms, material exploration, material engineering techniques, and practical applications. It also discusses the challenges and future prospects of creating high-performance 2D TMDs SERS substrates and outlines potential directions for achieving significant breakthroughs in practical applications. image
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Recent Progress on 2D Noble-Transition-Metal Dichalcogenides
    Pi, Lejing
    Li, Liang
    Liu, Kailang
    Zhang, Qingfu
    Li, Huiqiao
    Zhai, Tianyou
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (51)
  • [42] Transport studies in 2D transition metal dichalcogenides and black phosphorus
    Du, Yuchen
    Neal, Adam T.
    Zhou, Hong
    Ye, Peide D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (26)
  • [43] Optical nano-imaging of 2D transition metal dichalcogenides
    Ambardar, Sharad
    Voronine, Dmitri V.
    2018 IEEE RESEARCH AND APPLICATIONS OF PHOTONICS IN DEFENSE CONFERENCE (RAPID), 2018, : 363 - 365
  • [44] Biomedical and bioimaging applications of 2D pnictogens and transition metal dichalcogenides
    Urbanova, Veronika
    Pumera, Martin
    NANOSCALE, 2019, 11 (34) : 15770 - 15782
  • [45] Noninvasive Deterministic Nanostructures Lithography on 2D Transition Metal Dichalcogenides
    Ramo, Lorenzo
    Peci, Ermes
    Magnozzi, Michele
    Spotorno, Emma
    Venturino, Valentina
    Sygletou, Maria
    Giordano, Maria Caterina
    Zambito, Giorgio
    Telesio, Francesca
    Milosz, Zygmunt
    Canepa, Maurizio
    Bisio, Francesco
    ADVANCED ENGINEERING MATERIALS, 2025, 27 (01)
  • [46] Recent advances in plasma modification of 2D transition metal dichalcogenides
    Nan, Haiyan
    Zhou, Renwu
    Gu, Xiaofeng
    Xiao, Shaoqing
    Ostrikov, Kostya
    NANOSCALE, 2019, 11 (41) : 19202 - 19213
  • [47] Threshold magnetoresistance in anistropic magnetic 2D transition metal dichalcogenides
    Xu, Hongjun
    Hsu, Ming-Chien
    Fuh, Huei-Ru
    Feng, Jiafeng
    Han, Xiufeng
    Zhao, Yanfeng
    Zhang, Duan
    Wang, Xinming
    Liu, Fang
    Liu, Huajun
    Cho, Jiung
    Choi, Miri
    Chun, Byong Sun
    Coileain, Cormac O.
    Wang, Zhi
    Jalil, Mansoor B. A.
    Wu, Han-Chun
    Chang, Ching-Ray
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (12) : 3058 - 3064
  • [48] Recent progress of flexible electronics by 2D transition metal dichalcogenides
    Lu Zheng
    Xuewen Wang
    Hanjun Jiang
    Manzhang Xu
    Wei Huang
    Zheng Liu
    Nano Research, 2022, 15 : 2413 - 2432
  • [49] Transient Nanoscopy of Exciton Dynamics in 2D Transition Metal Dichalcogenides
    Li, Jingang
    Yang, Rundi
    Higashitarumizu, Naoki
    Dai, Siyuan
    Wu, Junqiao
    Javey, Ali
    Grigoropoulos, Costas P.
    ADVANCED MATERIALS, 2024, 36 (21)
  • [50] Electrostatic Potential Anomaly in 2D Janus Transition Metal Dichalcogenides
    Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha
    410082, China
    不详
    410082, China
    Ann Phys Leipzig, 1600, 12